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Abstract

Julia is a dynamic, high-performance programming language for
scientific computing. To encourage a high level of code reuse and
extensibility, Julia is designed around symmetric multiple dynamic
dispatch, which allows functions to have multiple implementations
tailored to different argument types. To resolve multiple dispatch, Julia
relies on a subtype relation over a complex language of run-time types
and type annotations, which include set-theoretic unions, distributive
tuples, parametric invariant types, and impredicative existential types.
Notably, subtyping in Julia is undecidable, which manifests with a
run-time stack-overflow error when program execution encounters a
subtyping query that causes the subtype checker to loop.

In this dissertation, I propose a decidable subtype relation for a re-
stricted language of Julia types where existential types inside invariant
constructors are limited to ones expressible with use-site variance. To
estimate the migration effort that would be required for switching to
the restricted type language, I analyze type annotations in the corpus
of 9K registered Julia packages. Out of 2M statically identifiable type
annotations in the corpus, 99.99% satisfy the restriction, making it a
viable candidate for evolving Julia towards decidable subtyping.
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1

I N T R O D U C T I O N

Julia is a dynamic, high-level, high-performance programming lan-
guage [Bezanson et al. 2017], originally designed for scientific com-
puting. At the core of Julia’s design is multiple dynamic dispatch,
which relies on an expressive language of type annotations to tailor
function implementations to different argument types. The type lan-
guage includes set-theoretic unions, distributive tuples, parametric
invariant types, and impredicative existential types. Multiple dispatch
is resolved at run time with a complex subtyping algorithm. However,
subtyping in Julia is undecidable. In practice, when an undecidable
subtyping check is encountered, program execution fails with an
uninformative StackOverflowError.

In this dissertation, I propose a decidable subtype relation for a
restricted language of Julia types. Namely, the restriction limits existen-
tial types inside invariant constructors to existential types expressible
with use-site variance, similar to Java wildcards. In a corpus of 9K
registered Julia packages, 99.99% of 2M statically identifiable type
annotations satisfy the proposed restriction. Thus, the restriction
provides a viable approach for evolving the Julia language towards
decidable subtyping.

1.1 subtyping in julia

To encourage a high level of code reuse and extensibility, Julia is
designed around symmetric multiple dynamic dispatch. Multiple dispatch
allows a function to have multiple implementations, called methods,
tailored to different argument types; at run time, a function call is
dispatched to the most specific method for the given arguments.

To deliver performance, Julia relies on a type-specializing just-in-
time (JIT) compiler: with few exceptions1, every time a method is
called with a new set of argument types, it is specialized for those
types, creating a new method definition [Pelenitsyn et al. 2021]. There-
fore, even for functions with a single user-defined method, more

1 https://docs.julialang.org/en/v1/manual/performance-tips/
#Be-aware-of-when-Julia-avoids-specializing

1

https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing
https://docs.julialang.org/en/v1/manual/performance-tips/#Be-aware-of-when-Julia-avoids-specializing
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methods can accrue during the program execution, adding work for
the dispatch mechanism.

Multiple dispatch is resolved with the use of a subtype relation.
Namely, for every function call, subtyping is checked between the
argument types and method signatures, as well as between method
signatures, to pick the most specific applicable method. While most
run-time value types are nominal, the language of type annotations
is more complex and expressive. In particular, inspired by semantic
subtyping where types are interpreted as sets, Julia supports covariant
tuples that distribute over unions. For example, according to the
semantic approach, the type Tuple{String, Union{Int64, UInt64}} repre-
sents a set of binary tuples where the first component is a string,
and the second component is either a signed or unsigned integer.
Therefore, both Tuple{String, Int64} and Tuple{String, UInt64} are sub-
types of the above type, and that type is equivalent to the union
of the two tuples, Union{Tuple{String, Int64}, Tuple{String, UInt64}}. In
addition to finite unions, Julia supports existential types, referred to
as union-all types or iterated unions in the language. For example,
Vector{T} where T represents an infinite union of vectors Vector{t} for
all instantiations t of the type variable T. A more detailed account of
Julia types and subtyping is provided in Chapter 2.

Despite intentional simplifications in the type language, e.g. the
lack of recursive bounds2 on type variables, subtyping in Julia is unde-
cidable [Chung 2023]. Although relying on undecidable subtyping is
not unprecedented for a statically typed language (see Scala [Hu
and Lhoták 2019] for an example), the price of undecidability is
higher in Julia, since it can manifest at almost any point during
program execution. In particular, the run-time system relies on un-
decidable subtyping to resolve function calls, process new method
definitions [Belyakova et al. 2020], manipulate data (e.g. when adding
an element to a container), as well as JIT compile methods [Pelenitsyn
et al. 2021]. In practice, the undecidability leads to a run-time crash
with a StackOverflowError. Such an issue can be particularly hard to
debug, because the error is uninformative: neither the problematic
subtyping query nor stack trace is reported.

A number of issues related to subtyping have been reported on
the Julia bug tracker. For example, #419483 reports a StackOverflowError

caused by a function definition, which is likely linked to undecid-
ability; #331374 points out an inconsistency in subtyping; and #24166

5

(now fixed) reports a problem with reflexivity and transitivity. Overall,
there are 105 open/704 closed issues labeled with “types and dispatch”

2 For example, X implements Comparable<X> in Java.
3 https://github.com/JuliaLang/julia/issues/41948
4 https://github.com/JuliaLang/julia/issues/33137
5 https://github.com/JuliaLang/julia/issues/24166

https://github.com/JuliaLang/julia/issues/41948
https://github.com/JuliaLang/julia/issues/33137
https://github.com/JuliaLang/julia/issues/24166
https://github.com/JuliaLang/julia/issues/41948
https://github.com/JuliaLang/julia/issues/33137
https://github.com/JuliaLang/julia/issues/24166
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Table 1: Open/closed issues on the Julia bug tracker (March 2023)
types and dispatch codegen GC macros <any label>

<any label> 92/414 56/246 24/51 27/36 3551/19238

bug 13/138 8/86 1/15 5/11 226/2664

Axes represent labels the issues are marked with: for example, the cell
24/51 in the row <any label> and column GC corresponds to all issues
labeled with “GC”, whereas 1/15 in the row bug and column GC corre-
sponds to “GC” issues that are also labeled with “bug”.

as of March 2023, with 13 open/138 closed being also labeled with
“bug” (not every issue is properly labeled as a bug, e.g. the afore-
mentioned #24166 is not). Table 1 provides a few more data points
for comparison: for example, there are 8 open/86 closed “codegen”
bugs and 1 open/15 closed “GC” bugs. Thus, type-related concerns,
including the undecidability of subtyping, constitute a non-negligible
portion of problems in the Julia implementation.

1.2 thesis and contributions

Due to Julia’s ubiquitous use of subtyping at run time, the undecid-
ability of subtyping is consequential. It is unlikely, as I discuss in
Section 3.3, that a compatible6 decidable subtype relation exists for
the entirety of Julia types. However, my thesis is that

the Julia language can be evolved to provide for decidable sub-
typing while requiring minimal effort for migrating existing
code.

Because the type language and its associated subtype relation impact
the set of valid Julia programs and their dynamic semantics, replacing
subtyping can have profound effects on programmer experience as
well as the ability to migrate existing code. Thus, not every decidable
subtyping would be a viable candidate for Julia’s evolution.

In this dissertation, I show that there is a restriction on Julia’s type
language that allows for decidable subtyping and supports 99.99%
of statically identifiable type annotations in registered Julia packages.
Namely, the restriction limits existential types inside invariant con-
structors to existential types expressible with use-site variance, similar
to Java wildcards [Torgersen et al. 2004].

The dissertation provides an overview of Julia (Chapter 2 and Sec-
tion 3.1) and makes the following contributions:

• Specification of Julia subtyping [Zappa Nardelli, Belyakova,
Pelenitsyn, Chung, Bezanson, and Vitek 2018] (Section 3.2). The

6 Compatible means compatible with the current Julia subtyping, i.e., produces the same
answer as Julia subtyping whenever Julia subtyping terminates without an error.

https://github.com/JuliaLang/julia/issues/24166
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specification covers most of Julia, with the only exception being
variable-length tuples.

• Decidable subtyping for a restricted language of Julia types [Be-
lyakova, Chung, Tate, and Vitek 2023] (Chapter 4). The restriction
retains most of Julia types, limiting only existential types inside
invariant constructors.

• Evaluation of the migration effort required to switch to the
restricted type language (Chapter 5). In the corpus of all 9K
registered Julia packages, 99.99% of source code type annotations
satisfy the restriction.

Furthermore, Appendix A.2 discusses a semantic interpretation of
types, extending [Belyakova 2019].

Related to this dissertation, I worked on formalizing several aspects
of the Julia language:

• [Belyakova, Chung, Gelinas, Nash, Tate, and Vitek 2020] presents
world-age semantics, which enables dispatch optimization in the
presence of eval by delaying visibility of dynamically generated
methods.

• [Pelenitsyn, Belyakova, Chung, Tate, and Vitek 2021] defines type
stability—the property which allows for efficient compilation of
code with multiple dispatch.



2

B A C K G R O U N D

Julia is a high-level, dynamic programming language, which was
originally designed for scientific computing [Bezanson et al. 2017]
and released in 2012. It aims to solve the so-called “two-language
problem” by providing both good performance and productivity fea-
tures [Bezanson et al. 2018]. For performance, Julia relies on an opti-
mizing, type-specializing JIT compiler. For productivity, the language
provides garbage collection, dynamic typing, and multiple dynamic
dispatch.

Multiple dynamic dispatch [Bobrow et al. 1986; Chambers 1992] is
at the core of the Julia language. The dispatch mechanism allows a
function, called a generic function, to have multiple implementations,
called methods, that are tailored to different argument types. For
example, Figure 1 shows several method definitions of the function (-),
which is used as both unary negation (lines 1 and 5) and binary
subtraction (lines 2–4).

Unlike static method overloading (which is resolved at compile time,
using static types of the arguments), multiple dynamic dispatch is
resolved at run time: every function call in the program is dispatched
to the most specific applicable method based on the run-time types of
the arguments. If such a single best method does not exist, an error
is raised. Section 2.2 describes this process in more detail, but for
now, it suffices to know that dispatch resolution relies on subtyping.
Notably, Julia does not allow the user to call a method of a generic
function directly: the only way to reach a method is via the dispatch
mechanism. Thus, whenever a method is called, its arguments are
guaranteed to be subtypes of the declared method signature types.

2.1 types

The expressive power of Julia’s multiple dispatch stems from its unique
language of type annotations, as demonstrated in Figure 1. Briefly,
the type language supports:

• the top type Any, which is a supertype of all types;

• nominal non-parametric types, e.g. BigInt and Number;

5
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� �
1 -(x::BigInt) = MPZ.neg(x)
2 -(x::BigInt, y::BigInt) = MPZ.sub(x, y)
3 -(x::T, y::T) where T<:Union{Int16, Int32, ..., UInt128} = sub_int(x, y)
4 -(m::Missing, n::Number) = missing
5 -(A::AbstractArray{T,N}) where {T,N} = broadcast_preserving_zero_d(-, A)� �

Figure 1: Several method definitions of generic function (-) in Julia

Methods in lines 1–2 call library functions. Method in line 3 calls a built-
in function. Method in line 4 returns a singleton value missing of the
Missing type. Method in line 5 calls a higher-order function that applies
(-) to the elements of the array argument A.

• nominal parametric types, which are invariant in the type pa-
rameters, e.g. AbstractArray{T,N}

1 in line 5;

• set-theoretic union types, e.g. Union{Int16, ..., UInt128} in line 3;
the empty Union{} is the bottom type, i.e. a subtype of all types;

• covariant tuple types, e.g. Tuple{String, Number};

• so-called union-all types, written with where (lines 3 and 5): in-
tuitively, a union-all type t where T represents a union of types
t[t'/T] for all valid instantiations t' of the type variable T.

Nominal types are induced by user-defined datatype declarations
and constitute a single-parent inheritance hierarchy. Julia’s support
for inheritance is limited compared to mainstream object-oriented lan-
guages such as C# and Java: only abstract types, which cannot be used
to construct values, can be inherited, i.e., used as declared supertypes
of other nominal types. Datatypes that are used to construct values
are referred to as concrete. Concrete nominal types include primitive
types such as Int128, and composite struct types (either mutable or im-
mutable). Figure 2 provides several examples of user-defined concrete
(on the left) and abstract (on the right) types. Parametric types (both
abstract and concrete) can declare non-recursive lower and upper
bounds on type variables; for example, type Rational{T} requires T to
be a subtype of abstract Integer. Supertypes in type declarations are
declared to the right of <: and cannot refer to the type being declared.
For example, Int128 is a subtype of Signed, and Signed is a subtype of
Integer. If the supertype declaration is omitted, like in AbstractSet{T},
the supertype defaults to Any.

The distinction between concrete and abstract types is important to
Julia’s runtime. Concrete types are run-time types of values, which can

1 Julia allows unbounded type variables such as the dimensionality parameter N of
AbstractArray{T,N} to be instantiated with “plain bits” values such as numbers or
booleans, for which isbits function returns true. Thus, AbstractArray{Int64,1} is
a valid nominal type. For value arguments, the invariance check succeeds if they are
bitwise equal.

https://docs.julialang.org/en/v1/base/base/#Base.isbits
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� �
1 primitive type Int128 <: Signed 128
2 end
3

4 struct Rational{T<:Integer} <: Real
5 num::T
6 den::T
7 end
8

9 mutable struct
10 BitSet <: AbstractSet{Int}
11 ...
12 end� �

� �
1 abstract type Signed <: Integer
2 end
3

4 abstract type AbstractSet{T}
5 end� �

Figure 2: Examples of type declarations: concrete (left) and abstract (right)

Int128 is a primitive, 128-bit type. Rational is an immutable paramet-
ric composite type. BitSet is a mutable composite type. Signed is an
abstract type. AbstractSet is an abstract parametric type.

be obtained with the typeof operator. Because concrete types are final,
i.e., cannot be inherited, the compiler knows their size and memory
layout and can thus optimize code efficiently. In Julia, concrete types
include concrete nominal types and their tuples. Abstract types, on the
other hand, are widely used as type annotations in method definitions.
They also account for heterogeneous data when used as field type
annotations or type arguments of parametric constructors, e.g. in
Vector{Any}. Values of abstract types are stored as references and are not
conducive to optimizations. Besides abstract nominal types, abstract
types include union types such as Union{Int16, . . ., UInt128}, and union-
all types such as Vector{T} where T (a shorthand for this type is simply
Vector). Note, however, that every particular instantiation of Vector,
e.g. Vector{Number}, is a concrete type regardless of the concreteness
of the type argument. The bottom type represented with the empty
union, Union{}, is neither concrete nor abstract: it has no values and is
a subtype of all types.

It is worth noting that the Julia language does not have a struc-
tural function type, which would typically be written as T → S. As
mentioned above, all function calls are dynamically dispatched to
a method of that generic function, and there is no way to directly
call a particular method or pass it as an argument. However, generic
functions are first-class values and can be used as method arguments:
for example, (-) is passed to a function call in line 5 of Figure 1. Every
generic function f has the concrete type typeof(f), which is a subtype
of the type of all functions Function.

In Julia, types are also values: they can be stored in variables, passed
as function arguments, and introspected. Depending on the kind of
a type, the typeof operator returns one of four values: DataType for
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� �
1 myzero(::Type{Int}) = 0
2 myzero(::Type{Float64}) = 0.0
3 myzero(::Type{Vector{T}}) where T = Vector{T}()
4

5 myzero(Int) # returns 0
6 myzero(Vector{Bool}) # returns Bool[]� �

Figure 3: Function myzero, which dispatches on type values using Type{T}

fully instantiated nominal types and tuples, Union for finite union
types, UnionAll for union-all (where) types, and Core.TypeofBottom for the
bottom type Union{}. There is also a special abstract parametric type
Type{T} such that t is considered an instance2 of Type{t}: as exemplified
by Figure 3, Type{T} facilitates multiple dispatch on type values.

2.2 multiple dispatch

Argument type annotations are optional: annotations are the key to
defining multiple distinct methods, but if the user omits some or all
annotations in a method, those annotations default to Any—a supertype
of all types. For example, in the first sub5 definition below, argument x

does not have an explicit type annotation:

� �
1 sub5(x) = x - 5 # same as sub5(x::Any) = x - 5

2 sub5(x::String) = x * "-5"� �
If sub5 is called with a string, the call will dispatch to the method defi-
nition in line 2 and always succeed. If sub5 is called with anything else,
the call will dispatch to the method definition in line 1. In the latter
case, the execution will succeed as long as there is an implementation
of (-) for the type of x and Int64, which is the type of 5. For example,
sub5(10.0) evaluates to 5.0, whereas sub5([]) fails:

� �
1 julia> sub5([])

2 ERROR: MethodError: no method matching -(::Vector{Any}, ::Int64)� �
To achieve good performance, Julia generates method instances spe-
cialized to concrete argument types the function was called with [Pe-
lenitsyn et al. 2021]. Thus, next time a function is called with the same
argument types, method dispatch will have more definitions to choose
from. Figure 4 shows an example REPL session for sub5.

2 v isa t checks if value v is an instance of type t
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� �
1 julia> sub5(x) = x - 5
2 julia> sub5(x::String) = x * "-5"
3

4 julia> methods(sub5)
5 # 2 methods for generic function "sub5":
6 [1] sub5(x::String) in Main at REPL[2]:1
7 [2] sub5(x) in Main at REPL[1]:1
8

9 julia> methods(sub5)[2].specializations
10 svec()
11

12 julia> sub5(10.0)
13 5.0
14

15 julia> methods(sub5)
16 # 2 methods for generic function "sub5":
17 [1] sub5(x::String) in Main at REPL[2]:1
18 [2] sub5(x) in Main at REPL[1]:1
19

20 julia> methods(sub5)[2].specializations
21 svec(MethodInstance for sub5(::Float64), nothing, ...)� �

Figure 4: A REPL session demonstrating method specialization

Function methods lists all methods of a generic function. Field
specializations of a method stores compiled method specializations.

Method resolution for a dispatched function call f(a1, a2, ...) relies
on tuple subtyping [Leavens and Millstein 1998] between run-time
argument types and method signatures. Namely, argument types are
combined into a tuple of concrete types

σ = Tuple{typeof(a1), typeof(a2), ...},

and every method signature is either a tuple of declared argument
types if the method definition is not parametric, or a union-all of such
tuple if the definition is parametric. For example, consider Figure 1:
method in line 1 is represented by the signature Tuple{BigInt}, line 4

by Tuple{Missing,Number}, and line 3 by Tuple{T, T} where T <: Union{...}.
Because tuple subtyping gives all elements equal consideration, multi-
ple dispatch in Julia is symmetric.

Dispatch resolution, if successful, returns the most specific applicable
method for the given arguments. Namely, for a call to a generic func-
tion f with a concrete argument type σ, the process can be described
as follows:

1. Find all applicable methods, i.e., all method signatures τ of the
function f that are supertypes of the argument type σ <∶ τ. If no
methods are applicable, a method-not-found error is raised.

2. Among the applicable methods {τ1, . . . , τn}, pick the method
with the most specific type signature, i.e., τk such that ∀i ∈
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1..n, τk <∶ τi. If there is no such single best method, a method-is-
ambiguous error is raised. Requested by language users over the
years, Julia has additional specificity rules to resolve ambiguities
in some cases, but those are not relevant to this work.

Thus, subtyping is an integral part of Julia’s dynamic semantics, and
due to step 2, it is used with arbitrarily complex types.



3

J U L I A S U B T Y P I N G

In this chapter, I provide a detailed account of Julia subtyping (Sec-
tions 3.1 and 3.2) and discuss its undecidability (Section 3.3).

3.1 overview of subtyping

The syntax of Julia types is given in Figure 5.
Subtyping in Julia largely follows the combination of nominal sub-

typing for user-defined nominal types and semantic subtyping for
covariant tuple and union types. For example, for datatype dec-
larations from Figure 2, Int128 is a subtype of Signed and, transi-
tively, of Integer; BitSet is a subtype of AbstractSet{Int}. A union
type Union{t1, t2, ...} describes a set-theoretic union of types t1,
t2, ...; for example, Int is a subtype of Union{Signed, String}, and
Union{t1, t2, ...} <: t if all components t1 <: t, t2 <: t, .... Tuples
in Julia are immutable, and tuple types are covariant: Tuple{t1, t2, ...}

is a subtype of Tuple{t1', t2'...} if their corresponding components
are subtypes, i.e., t1 <: t1', t2 <: t2', .... Following semantic sub-
typing [Frisch et al. 2008] where types are interpreted as sets, tu-
ple types distribute over unions, so types Tuple{Union{Int,String}} and
Union{Tuple{Int},Tuple{String}} are equivalent.

User-defined parametric datatypes are invariant in the type pa-
rameter regardless of whether the datatype is mutable or immutable,
meaning that Name{t1, t2, ...} is a subtype of Name{t1', t2', ...} only
if the corresponding type arguments are equivalent, i.e., t1 <:> t1',
t2 <:> t2', .... Thus, the invariant type Rational{Int} is not a subtype
of Rational{Signed}.

Abstract union-all types t where l<:T<:u are better known in the
literature as bounded existential types, which also model Java wild-
cards1 [Torgersen et al. 2004]; I will call them as such in the remainder
of the dissertation. If lower (upper) bound on the type variable is omit-
ted, it defaults to the bottom type Union{} (top type Any). Intuitively, an
existential type denotes a union of t[t'/T] for all instantiations of the

1 In Julia syntax, a Java wildcard type Foo<?> can be written as Foo{T} where T or
Foo{<:Any}.

11
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t ∶∶=
∣ Any top
∣ Union{t1, . . . , tn} union
∣ Tuple{t1, . . . , tn} tuple
∣ name{t1, . . . , tn} user-defined type
∣ t where l <∶ T <∶ u union-all
∣ T type variable

Figure 5: Syntax of Julia types

type variable T such that l <: t' <: u. Similarly to subtyping of finite
union types, the intent is that:

• (t where l<:T<:u) <: t2 if, for all valid instantiations l<:t'<:u, it
holds that t[t'/T] <: t2, and

• t1 <: (t where l<:T<:u) if there exists at least one l<:t'<:u such that
t1 <: t[t'/T].

For example, Vector{Int} is a subtype of Vector{T} where T<:Integer be-
cause T can be instantiated with Int, and Vector{T} where T<:Integer is a
subtype of Vector{S} where S because for all valid instantiations t' of T,
type variable S can be instantiated with the same type t'. Just like with
unions, tuples distribute over existential types: for example, types
Tuple{Vector{T} where T} and Tuple{Vector{T}} where T are equivalent.

Existential types in Julia are impredicative: existential quantifiers can
appear anywhere in a type, and type variables can be instantiated with
arbitrary existential types. For example, type Vector{Matrix{T} where T}

denotes a vector of matrices with arbitrary element types. In contrast,
Vector{Matrix{S}} where S denotes a set of vectors where elements are
matrices with the same element type. Thus, a vector of integer ma-
trices Vector{Matrix{Int}} is a subtype of the latter—existential—type,
because S can be instantiated with Int. But it is not a subtype of the
former—invariant parametric—type Vector{Matrix{T} where T}, because
type arguments Matrix{Int} and Matrix{T} where T are not equivalent.
Note how type arguments of invariant type constructors such as Vector

can be arbitrarily complex: because of that, subtyping between two
concrete types is no easier than subtyping between arbitrary types.

Existential types serve at least two distinct purposes in the Julia
language. First, parametric types instantiated with existential type
arguments, such as

Vector{Matrix{T} where T},

are useful for representing heterogeneous data. Second, top-level
existential types, such as

Tuple{T, Vector{T}} where T,
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represent type signatures of parametric method definitions. It may
be surprising that for method signatures, Julia uses existential rather
than universal types, but recall that the primary purpose of types
is to serve multiple dispatch. In Julia, it is impossible to directly
invoke a parametric method definition and provide it with a type
argument. Instead, the method is being dispatched to if subtyping for
the corresponding existential type succeeds. Then, in the body of the
method, the existential type is implicitly unpacked, with the witness
type being some valid instantiation induced by subtyping. Consider
the following code snippet as an example:

� �
1 f(v :: Vector{T}) where T =

2 Set{T}(v)

3

4 f([5, 7, 5]) # returns Set{Int} with 2 elements: 5, 7� �
Because [5, 7, 5] is a Vector{Int}, and Tuple{Vector{Int}} is a subtype
of the existential Tuple{Vector{T}} where T, as witnessed by the instan-
tiation of T with Int, the call f([5, 7, 5]) dispatches to the method in
line 1, and T in the body of the method becomes Int. However, when
multiple instantiations of the variable are possible, Julia sometimes
gives up on assigning the witness type. In the example below, sub-
typing succeeds for the call g(true), because Tuple{Bool} is a subtype of
Tuple{T} where T>:Int: there are, in fact, multiple possible instantiations
t of T such that Tuple{Bool} <: Tuple{t}, e.g. Any or Union{Int, Bool}. But
rather than pick one instantiation, Julia throws an error as soon as the
program tries to access type variable T:

� �
1 > g(x::T) where T>:Int = begin

2 println(x)

3 println(T)

4 end

5

6 > g(true)

7 true

8 ERROR: UndefVarError: T not defined� �
On the other hand, for the call g(5), T is assigned the smallest possible
type, Int:

� �
1 > g(5)

2 5

3 Int� �
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Subtyping of existential types includes a special case, called the
diagonal rule, which provides the support for a generic programming
pattern where method arguments are expected to be of the same con-
crete type. Consider the following method definition, which defines
equality (==) in terms of the built-in equality of bit representations
(===):� �

1 ==(x::T, y::T) where T<:Number = x === y� �
If it were possible to instantiate T with an abstract type such as
Integer, the method could be called with a pair of a signed and un-
signed integer. This would be an incorrect implementation of equality,
for the same bit representation corresponds to different numbers
when interpreted with and without the sign. To prevent such behav-
ior, the diagonal rule states: if a type variable appears in the type
(1) only covariantly and (2) more than once, it can be instantiated
only with concrete types.2 Thus, the type signature of (==) above,
Tuple{T, T} where T<:Number, represents a concretely instantiatable exis-
tential type: it is a union of tuples Tuple{t, t} where t is a concrete
subtype of Number. The same rule applies in line 3 of Figure 1: built-
in integer subtraction sub_int is guaranteed to be called only with
primitive integers of the same concrete type.

3.2 specification of subtyping

For Julia programmers, reasoning about the subtype relation is nec-
essary to understand and correctly use multiple dynamic dispatch.
However, the language documentation does not provide a specification
of subtyping: instead, subtyping is mentioned in multiple sections
related to type constructors and multiple dispatch. Initially, an in-
complete (and soon outdated) definition of subtyping existed only
in [Bezanson 2015], with the only reference point being the actual
implementation of subtyping (∼3000 lines of heavily optimized C code
as of 2018).

To build intuition about Julia subtyping, this section presents a
fragment of the specification of Julia 0.6.2 subtyping from [Zappa
Nardelli et al. 2018]. In that work, my collaborators and I defined,
implemented, and empirically validated a subtype relation for Julia’s
type language, thus providing the first complete specification of Julia
subtyping. The only omitted feature is the Vararg{T,N} construct, which
can be used as the last parameter of a tuple to denote N trailing
arguments of type T. Having reconstructed the subtype relation,

2 A similar rule applies to static resolution of method overloading in C#. An example
can be found on this page: https://fzn.fr/projects/lambdajulia/diagonalcsharp.pdf

https://fzn.fr/projects/lambdajulia/diagonalcsharp.pdf


3.2 specification of subtyping 15

we were able to identify multiple issues such as counterexamples
to reflexivity and transitivity, and suspected the undecidability of
subtyping, which was later proved by Chung [2023]. Most of the bugs
we reported have been fixed by Julia maintainers. Furthermore, the
treatment of union types in the diagonal rule has changed based on
our proposal.

The subtyping fragment is presented in Figure 6. It includes features
relevant to the undecidability of subtyping, namely: unions, tuples,
invariant constructors, and existential types. Following the paper,
types are written as in the Julia language: for example, existential types
are represented with where. “Plain bits” values, nominal subtyping,
subtyping of Type{t}, and the diagonal rule3 are omitted, but they can
be found in [Zappa Nardelli et al. 2018].

In Figure 6, subtyping is defined in the form of a judgment

E ⊢ t <∶ t′ ⊢ E′,

which should be read as: in the environment E, type t is a subtype of t′,
with updated constraints E′. E is a type variable environment that
contains two kinds of variables: forall (also called left, introduced by
existential types on the left and recorded as LT) and exist (also called
right, introduced by existential types on the right and recorded as RT).
Variables are recorded with their declared lower and upper bounds l
and u as Tu

l ; bounds on exist (right) variables can get tighter during
subtype checking, which is reflected in the updated environment E′.
For example, consider the following judgment:

Tuple{Int} <∶ Tuple{T} where Union{}<∶T<∶ Any.

First, the right variable T is introduced into the environment with its
declared bounds Union{} and Any:

RTAny

Union{} ⊢ Tuple{Int} <∶ Tuple{T} ⊢ ?

Next, since tuples are covariant, it should be the case that Int is a
subtype of T. Recall the intuition that for existential types on the right,
subtyping holds if there exists a valid instantiation of the variable that
would satisfy the judgment. In the example, subtyping Int <∶ T holds
if the variable T is instantiated with a type that is a supertype of Int.
Therefore, this very constraint is recorded in an updated environment
as RTAny

Int (note the larger lower bound):

RTAny

Union{} ⊢ Int <∶ T ⊢
R TAny

Int,

3 The treatment of union types in the diagonal rule has changed since the paper was
published, but the paper discusses the issue.
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E ⊢ t <∶ t ⊢ E

Top

E ⊢ t <∶ Any ⊢ E

Refl

E ⊢ T <∶ T ⊢ E

Tuple

E ⊢ t1 <∶ t′1 ⊢ E1 . . . En−1 ⊢ tn <∶ t′n ⊢ En

E ⊢ Tuple{t1, . . . , tn} <∶ Tuple{t′1, . . . , t′n} ⊢ En

Tuple_Lift_Union

t′ = lift_union(Tuple{t1, . . . , tn}) E ⊢ t′ <∶ t ⊢ E′

E ⊢ Tuple{t1, . . . , tn} <∶ t′ ⊢ E′

Tuple_Unlift_Union

t′ = unlift_union(Union{t1, . . . , tn}) E ⊢ t′ <∶ t ⊢ E′

E ⊢ t <∶ Union{t1, . . . , tn} ⊢ E′

Union_Left

E ⊢ t1 <∶ t ⊢ E1 . . . En−1 ⊢ tn <∶ t ⊢ En

E ⊢ Union{t1, . . . , tn} <∶ t ⊢ En

Union_Right

∃j. E ⊢ t <∶ tj ⊢ E′

E ⊢ t <∶ Union{t1, . . . , tn} ⊢ E′

App_Inv

E0 = add(E, Barrier) ∀ 0 < i ≤ n. Ei−1 ⊢ ti <∶ t′i ⊢ E′i ∧ E′i ⊢ t′i <∶ ti ⊢ Ei

E ⊢ name{t1, . . . , tn} <∶ name{t′1, . . . , t′n} ⊢ del(Barrier, En)

L_Intro

add(LTu
l , E) ⊢ t <∶ t′ ⊢ E′

E ⊢ (t where l <∶ T <∶ u) <∶ t′ ⊢ del(T, E′)

R_Intro

add(RTu
l , E) ⊢ t <∶ t′ ⊢ E′ consistent(T, E′)

E ⊢ t <∶ (t′ where l <∶ T <∶ u) ⊢ del(T, E′)

L_Left

search(T, E) = LT
u
l E ⊢ u <∶ t ⊢ E′

E ⊢ T <∶ t ⊢ E′

L_Right

search(T, E) = LT
u
l E ⊢ t <∶ l ⊢ E′

E ⊢ t <∶ T ⊢ E′

R_Left

search(T, E) = RT
u
l E ⊢ l <∶ t ⊢ E′

E ⊢ T <∶ t ⊢ upd(RT
t
l , E′)

R_Right

search(T, E) = RT
u
l (is_var(t)∧ search(t, E) = LS

u′

l′ ) ⟹ ¬outside(T, S, E)
E ⊢ t <∶ u ⊢ E′

E ⊢ t <∶ T ⊢ upd(RT
u
Union{l,t}, E′)

R_L
search(T1, E) = RT1

u1

l1 search(T2, E) = LT2
u2

l2
outside(T1, T2, E) ⟹ E ⊢ u2 <∶ l2 ⊢ E′ E ⊢ u1 <∶ l2 ⊢ E′′

E ⊢ T1 <∶ T2 ⊢ upd(RT1
u1
Union{T1,l1}, E′)

Figure 6: Julia subtyping (excerpt from [Zappa Nardelli et al. 2018])
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and the new environment is propagated back to the judgment for
tuples:

RTAny

Union{} ⊢ Tuple{Int} <∶ Tuple{T} ⊢R TAny
Int.

With the exception of Tuple_Lift_Union and Tuple_Unlift_Union,
which are discussed later, the rules for subtyping tuples, unions, and
invariant constructors are mostly straightforward. The rule Tuple

checks covariant subtyping of the tuple elements. The rules Union_Left

and Union_Right implement the forall and exist semantics for union
types on the left and on the right of the subtyping judgment; fur-
thermore, the rule Union_Left allows for deriving that Union{} is a
subtype of all types, because its hypothesis is trivially validated by
the forall quantification over an empty set. In the rule App_Inv for
invariant constructors, the equality of corresponding type arguments
ti and t′i is ensured by checking both ti <∶ t′i and t′i <∶ ti, referred
to as left-to-right and right-to-left checks, respectively; the Barrier

construct is discussed later.
Because the same right variable can appear in multiple positions,

environment updates E′i need to be propagated across all the elements
of a tuple/union/invariant constructor. For instance, consider the
following example:

RTAny

Union{} ⊢ Tuple{Any, Ref{Int}} ≮∶ Tuple{T, Ref{T}}.

After the first recursive call to subtyping,

RTAny

Union{} ⊢ Any <∶ T ⊢
R TAny

Any

the variable T is known to be a supertype of Any. Thus, subtyping
between Ref{Int} and Ref{T} is invoked in the updated environment:

RTAny
Any ⊢ Ref{Int} ≮∶ Ref{T}.

The left-to-right check succeeds, but the right-to-left check fails because
the lower bound of T—Any—is not a subtype of Int:

RTAny
Any ⊢ Int <∶ T ⊢

R TAny
Any

RTAny
Any ⊢ T ≮∶ Int.

Without environment propagation, the constraint Any<∶T would have
been lost and the subtyping check would have succeeded.

left and right variables . Left and right variables are treated
differently by the subtyping algorithm.

• Left variables never change in the environment, and subtyping
should hold with respect to their declared bounds. Thus, if a
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left variable T appears on the left of <∶, then the judgment can
be satisfied only if the upper bound of T is smaller than t:

LTu
l ⊢ T <∶ t ⊢L Tu

l only if LTu
l ⊢ u <∶ t ⊢L Tu

l .

If LT appears on the right, then it is the lower bound of T that
must be a supertype of t:

LTu
l ⊢ t <∶ T ⊢

L Tu
l only if LTu

l ⊢ t <∶ l ⊢L Tu
l .

This corresponds to the intuition that for a left-hand side exis-
tential type, subtyping should hold for all possible instantiations
of the type variable.

• Right variables, on the other hand, may accrue subtype con-
straints in addition to their declared bounds; updated bounds
are recorded in the output environment E′. For example, if a
right variable T appears on the right of the judgment, its lower
bound can become larger (but not larger than the upper bound):

RTu
l ⊢ t <∶ T ⊢

R Tu
Union{l,t} only if t <∶ u.

If the resulting constraints on a right variable are consistent,
as checked by consistent(T, E), subtyping succeeds. This corre-
sponds to the intuition that for a right-hand side existential type,
subtyping holds if there exists a valid instantiation of the type
variable.

environment structure . The environment has a non-trivial
structure. First, an environment E is composed of two stacks, denoted
by E.curr and E.past. The former, E.curr, is a stack of variables cur-
rently in scope (growing on the right), reflecting the order in which
variables have been added to the scope. In addition to variables, E.curr
records barriers: tags pushed to the environment whenever the subtype
check encounters an invariant constructor. Barriers will be discussed
later. In the examples presented in the chapter, E.curr is displayed
in place of E for readability. The second list, E.past, keeps track of
variables that are not any longer in scope. Consider the judgment:

Tuple{Ref{S} where S <∶ Int} <∶ Tuple{Ref{T}} where T.

In the derivation variable T is introduced by R_Intro rule—before the
variable S, but T’s bounds refer to S in the judgment

RTAny

Union{},
L SIntUnion{} ⊢ Ref{S} <∶ Ref{T} ⊢R TS

S,L SIntUnion{},
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which appears in the derivation tree. Thus, when L_Intro dis-
charges S, the variable is removed from E.curr and stored in E.past,
which allows the subtyping algorithm to access discharged variables
whenever required. The subtyping rules guarantee that it is never nec-
essary to update the bounds of a no-longer-in-scope variable. Relying
on a separate E.past environment avoids confusion when rules must
determine precisely the scope of each variable.

from forall/exist to exist/forall . In some cases, enforcing
the correct ordering of type variable quantifications requires extra care.
Consider the judgment:

Vector{Matrix{T} where T} ≮∶ Vector{Matrix{S}} where S.

The type on the left denotes a vector of arbitrary matrices; the type on
the right denotes the set of vectors of matrices where inner matrices
share the same element type. If the subtyping algorithm simply
introduced variables S and T into the environment, the following
judgments would succeed, because for all instances of T there is a
matching type for S:

RSAnyUnion{},
LTAny

Union{} ⊢ T <∶ S ⊢
RSAnyT ,LTAny

Union{}

RSAnyT ,LTAny

Union{} ⊢ S <∶ T ⊢
RST

T,LTAny

Union{}

However, we must instead find an instance of S such that the judg-
ment holds forall T: perhaps surprisingly, the outer invariant construct
Vector forces the the form of the rule of the order of quantifications.
Instead of a forall/exist query we must solve an exist/forall one. To cor-
rectly account for the form of the rule in the order of quantifications,
derivations must keep track of the relative ordering of variable intro-
ductions and invariant constructors. For this, the environment E.curr
is kept ordered, and barrier tags are pushed into E.curr whenever the
derivation goes through an invariant constructor in the rule App_Inv.

A variable S is defined to be outside a variable T in an environment
E if S precedes T in E.curr and they are separated by a barrier tag
in E.curr.

In our running example, the first check thus becomes:

RSAnyUnion{}, Barrier,LTAny

Union{} ⊢ T <∶ S.

The environment correctly identifies the variable S as outside T, and
the judgment should thus be interpreted as there exists an instance of
S such that, forall instances of T, T <∶ S holds. The variable S must thus
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be compared with the upper bound of T, deriving Any as the lower
bound:

RSAnyUnion{}, Barrier,LTAny

Union{} ⊢ Any <∶ S ⊢
R SAnyAny.

Again, given S outside T, the right-to-left check must now prove

RSAnyAny, Barrier,LTAny

Union{} ⊢ S <∶ T,

that is, it must conclude that there exists an instance of S such that,
forall instances of T, S <∶ T holds. In other terms, the variable S must
be a subtype of the lower bound of T. This fails, as expected.

Note that whenever the forall variable is constrained tightly and
quantifies over only one type, the exist/forall quantification can still
correctly succeed, as in the valid judgment below:

Ref{Ref{T} where Int<∶T<∶Int} <∶ Ref{Ref{S}} where S.

operations on environment. Recall that an environment, de-
noted by E, is composed by two stacks, denoted E.curr and E.past,
of variable definitions and barriers. The following operations are
defined on environments, where v ranges over variable definitions
and barriers:

add(v , E): push v at top of E.curr;

del(T, E): pop v from E.curr, check that it defines the variable T, and
push v at top of E.past;

del(Barrier, E): pop v from E.curr and check that it is a barrier tag;

search(T, E): return the variable definition found for T in E.curr or
E.past; fail if the variable definition is not found;

update(R Tu
l , E): update the lower and upper bounds of the variable

definition T in E.curr; fail if the variable definition is not found;

consistent(T, E): search T in E. If the search returns LTu
l , then return

true if E ⊢ l <∶ u and false otherwise; while building this
judgment, recursive consistency checks are disabled. If the
search returns RTu

l , then check if E ⊢ l <∶ u is derivable. If not,
return false. The shorthand consistent(E) checks the consistency
of all variables in the environment E.

distributivity. The rule Tuple_Lift_Union rewrites tuple types
on the left-hand side of the judgment into disjunctive normal forms,
making the distributivity of unions with respect to tuples derivable.
This rule can be invoked multiple times in a subtype derivation,
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enabling rewriting tuples into disjunctive normal form even inside in-
variant constructors. Rewriting is performed by the auxiliary function
lift_union(t), which pulls unions and existential types out of tuples,
anticipating syntactically the forall quantifications in a derivation; the
definition of this function can be found in [Zappa Nardelli et al. 2018].
Symmetrically, the rule Tuple_Unlift_Union performs the opposite
rewriting, delaying syntactically the exist quantifications on union
types appearing on the right-hand side of a judgment. The auxiliary
function unlift_union(t) returns a type t′ such that t = lift_union(t′).

The need for the Tuple_Unlift_Union rule is due to the complex
interaction between invariant constructors, union types, and existentials.
For instance, the judgment

Ref{Union{Tuple{Int, Bool}}} <∶ Ref{Tuple{T}} where T

is valid because T can be instantiated with Union{Int, Bool}. However,
building a derivation without the Tuple_Unlift_Union rule fails.
Initially, the left-to-right check for invariant application generates the
constraint T >∶ Union{Int, Bool}. Thus, the right-to-left check

RTAny

Union{Int,Bool} ⊢ Tuple{T} <∶ Union{Tuple{Int, Bool}}

gets stuck trying to prove T <∶ Int or T <∶ Bool. Rule Tuple_Unlift_Union

enables rewriting the right-to-left check into

RTAny

Union{Int,Bool} ⊢ Tuple{T} <∶ Tuple{Union{Int, Bool}},

which is provable because the existential quantifications is syntactically
delayed due to the union on the right-hand side.

subtyping existentials and variables . Rules L_Intro and
R_Intro add a where -introduced variable to the current environment,
specifying the relevant forall (L) or exist (R) semantics, and attempt to
build a subtype derivation in this extended environment. When the
variable gets out of scope, it is deleted from the curr list and added
to the past list of the environment. Variables with exist semantics
might have had their bounds updated in unsatisfiable way; before
moving them to E.past, the consistency of their bounds is checked by
the consistent(T, E) auxiliary function.

Note that existential types with inconsistent bounds, such as

Tuple{T} where Any<∶T<∶Int,

are considered well-formed, but they are not subtypes of Union{}
despite the fact that there are no values denoted by such types. In
Julia, attempting to instantiate such a type will produce an error:
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� �
julia> (Tuple{T} where Any<:T<:Int){Int}

ERROR: TypeError: in Tuple, in T, expected Any<:T<:Int, got Type{Int}� �
Subtyping for type variables is governed by rules L_Left, L_Right,

R_Left, and R_Right. Type variables with forall semantics are re-
placed with the hardest-to-satisfy bound: the upper bound if the
variable is on the left of the judgment, and the lower bound if the
variable is on the right. Variables with exist semantics are instead
replaced with their easiest-to-satisfy bound, and, to keep track of the
match, bounds of these variables are updated if a successful derivation
is found, reflecting their new bound. By symmetry with R_Right,
which updates the lower bound with Union{l, t}, one would expect
the rule R_Left to update T upper bound with t∩ u. However, until
our work on Julia started, it was believed that, because of invariance,
the explicit ordering of the checks performed by rule App_Inv would
ensure that t <∶ u had already been checked by rule R_Right. There-
fore, it would always hold that t = t∩ u, avoiding the need to compute
intersections of Julia types. This turned out to be false. Consider the
following example:

Vector{Vector{Any}}
<∶

Vector{Union{Vector{Any}, Vector{T}}} where T<∶Int.

This successful judgment contradicts the idea that Vector{T} can be
a subtype of Vector{Any} only if T is equivalent to Any, which is not
possible here. Back in 2018, both Julia and the specification presented
here could build a derivation for the above judgment: due to the
existential on the right-hand side, the check that ought to ensure
t <∶ u, that is Any <∶ Int, is skipped when performing the left-to-right
subtype check of the invariant constructor Vector. In response to this
finding, Julia designers introduced a simple_meet function4 to compute
intersection in simple cases. As of May 2023, the problematic judgment
above no longer holds.

To account for the exist/forall quantification the form of the rule,
the R_Right rule does not apply if the type on the left is a left variable
and the variables are in the exists/forall quantification (the check
¬outside(T, S, E) is responsible for this). Matching R-L variables is
specially dealt with by the R_L rule, which also performs the necessary
outside check: if the R-variable is outside, then the bounds on the L-
variable must constrain it to only one type. For this, the check u2 <∶ l2

4 Julia codebase already included a complex algorithm that computed an approxima-
tion of intersection of two types, which was used internally to compute dataflow
information. However, the algorithm was too slow to be integrated in the subtyping
algorithm.
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JTopK = Union{}

JαK = α

J∀α ≤ τ.τ′K = Tuple{Ref{α},Jτ
′K} where α >:JτK

Figure 7: Encoding of FN
≤ types in Julia

is sufficient, as the other direction is later verified by the environment
consistency check.

3.3 undecidability of subtyping

It is not unusual for a statically typed programming language to have
undecidable subtyping, as witnessed by Java and Scala [Grigore 2017;
Hu and Lhoták 2019]. In practice, undecidability means that the com-
piler might not terminate on some programs. Although undesirable,
such property can be acceptable if it manifests rarely and allows for
an expressive type system.

In Julia, however, subtyping is used at run time—for dispatch reso-
lution. Thus, undecidability is concerning even on rare occasions. That
is why the decidability of subtyping was one of the explicit goals of
the original Julia language design [Bezanson 2015]. To this end, Julia
disallowed several features that were known to cause undecidability,
such as recursive constraints on type variables and circularities in the
inheritance hierarchy [Tate et al. 2011].

Despite the intentional simplifications in the type language, Julia
subtyping is in fact undecidable. As shown in [Chung 2023], Julia
can encode system FN

≤ , which is known to be undecidable [Pierce
1992]. Figure 7 shows the encoding5, with τ1 ≤ τ2 in FN

≤ defined as
Jτ2K <∶ Jτ1K in Julia. In practice, the undecidability manifests itself
with a StackOverflowError. The reason is that, internally, Julia relies on
a dedicated stack to resolve subtyping and terminates the program
when the stack reaches a certain limit.

Although the nontermination of a particular subtyping algorithm
does not necessarily mean that a terminating algorithm for the same
language of types does not exist, I conjecture that

in the case of Julia’s type language, there is no terminating
subtyping algorithm that would match the intended subtyping
behavior described in Sections 3.1 and 3.2.

The key problem is the interaction of impredicative existential types,
invariant constructors, and unions. Note that the encoding of FN

≤ does
not involve unions, meaning that Julia subtyping is undecidable even

5 Arrow type is dropped as irrelevant to the undecidability result.
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if union types are removed. However, as discussed later, the presence
of unions limits available strategies of addressing the undecidability.

In what follows, I briefly revisit subtyping of invariant constructors
and existential types, discuss why their interaction is challenging, and
conclude with possible ways of addressing the challenge. I intention-
ally depart from the subtyping judgment E ⊢ t <∶ t′ ⊢ E′ presented
in the previous section (3.2) and instead use a simpler t <∶ t′ notation,
as I am exploring the space of possible subtyping algorithms.

First, recall that parametric types are invariant, meaning that types
such as Ref{t} and Ref{t′} are subtypes only if their type arguments
t and t′ are equivalent. The equivalence of types is expressed via
subtyping: t and t′ are equivalent if both t <∶ t′ and t′ <∶ t hold. To
check for equivalence, one can either rely on subtyping directly, or use
a separate relation t ≈ t′ such that t ≈ t′ ⟹ t <∶ t′ and t′ <∶ t.

Next, recall that an existential type t where l<∶T<∶u is meant to
represent a union of types t[t′/T] for all possible valid instantiations
l <∶ t′ <∶ u of the type variable T. Thus, whenever subtyping is
checked for some t1 <∶ (t where l<∶T<∶u), the subtyping algorithm
needs to check that there exists a valid instantiation t′ of T such that
t1 <∶ t[t′/T]. From now on, I will refer to such variable T (that is, a
variable introduced by an existential type on the right-hand side of
the judgment) as a unification variable; in Section 3.2, it was called
an exist/right variable.

Consider the following subtype query

Tuple{Vector{t′ S where l′<∶S<∶u′}, t′ }
<∶

Tuple{Vector{tT
1}, tT

2} where l<∶T<∶u,

where S occurs in t′ S and T occurs in both tT
1 and tT

2 . Let us walk
through possible steps of a subtyping algorithm A.

1. Because the right-hand side type is an existential, T is a unifi-
cation variable; A can remember the variable and proceed to
subtyping of

Tuple{Vector{t′ S where l′<∶S<∶u′}, t′} <∶ Tuple{Vector{tT
1}, tT

2}.

2. Both sides of the subtyping query are now tuples of matching
length. Tuples are covariant, so A needs to check that their
corresponding components are subtypes, i.e.,

Vector{t′ S where l′<∶S<∶u′} <∶ Vector{tT
1} and t′ <∶ tT

2 .

Since the unification variable T appears in both tT
1 and tT

2 , both
subtyping queries can impose constraints on T.
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a) The first tuple components are both invariant constructors,

Vector{t′ S where l′<∶S<∶u′} <∶ Vector{tT
1},

so A needs to check that their type arguments are equiv-
alent. Let A use subtyping for the equivalence check and
focus on the second, right-to-left check:

tT
1 <∶ t′ S where l′<∶S<∶u′.

i. The right-hand side type is an existential, so S is a
unification variable; A can remember the variable and
proceed to subtyping of

tT
1 <∶ t′ S.

ii. Let us assume that A successfully processes this sub-
typing query. Note that both sides of the query contain
unification variables, for T occurs in tT

1 and S occurs in
t′ S. Thus, the unification variables S and T might be
constraining each other.

iii. A needs to resolve the unification variable S, that is,
check that constraints that were necessary to satisfy

tT
1 <∶ t′ S

are consistent with each other as well as the declared
bounds l′ and u′. However, S might be constrained by
the unification variable T, and not all constraints on
T are known, for t′ <∶ tT

2 has not been processed yet.
Thus, the subtyping algorithm A is stuck.

How can the problem in 2(a)iii be addressed? In the example, S
cannot be resolved because not all relevant constraints are available.
Perhaps, instead of trying to resolve the variable at the point where
it goes out of lexical scope, A could instead store the constraints and
resolve them later. However, another—more challenging—problem is
that the two unification variables S and T may be arbitrarily constrain-
ing each other. In the presence of impredicative existential types,
constraints may have non-trivial solutions. For example, the following
constraint set is satisfiable when both S and T are instantiated with
Ref{Q} where Q:

{Ref{T} <∶ S, Ref{Ref{S}} <∶ T, S <∶ T}
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In general, for an arbitrary set of constraints with mutually con-
straining unification variables, finding a solution algorithmically is
not straightforward if not undecidable. Therefore, instead, I suggest
eliminating mutual constraints on unification variables. For this, I
consider two possible angles of attack.

1. Prevent unification variables from moving to the left-hand side of
subtyping. Recall that unification variables are introduced by
existential types on the right. The only way for a unification vari-
able to “travel” to the left is a right-to-left subtyping check for an
invariant constructor. Thus, instead of using subtyping to check
for equivalence of types, A could rely on a separate relation
t ≈ t′ and keep unification variables on the right. Unfortunately,
due to union types, checking for equivalence without relying
on subtyping might not be possible. For instance, consider the
following example:

Vector{Ref{Int}} <∶ Vector{Union{Ref{Int}, Ref{T}}} where T.

Instantiating T with Int is the only solution that would make
types Ref{Int} and Union{Ref{Int}, Ref{T}} equivalent. How-
ever, to find the solution, A would effectively need to check
Ref{T} <∶ Ref{Int}, bringing the unification variable to the left.

2. Prevent new unification variables from appearing on the right-hand
side of subtyping. Assuming that A has to rely on subtyping
for the equivalence check, unification variables introduced by
top-level existential types (i.e. existential types bound outside
invariant constructors) will appear on the left-hand side. Once
that happens, existential types bound inside invariant construc-
tors will be the only source of new unification variables on the
right. Thus, the elimination of variable-introducing existential
types inside invariant constructors would prevent unwanted
dependencies between unification variables.

In the next chapter, I present a decidable subtype relation that
follows the strategy 2 by restricting existential types inside invariant
constructors. A simpler approach would be to entirely eliminate
impredicative existentials, that is, allow only top-level existential types
such as

Vector{Matrix{T}} where T

but not
Vector{Matrix{T} where T}.

However, as discussed previously, types like the latter Vector type
above are used by Julia programmers to represent heterogeneous data,
so the simple approach appears unsatisfactory.
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D E C I D A B L E S U B T Y P I N G O F E X I S T E N T I A L T Y P E S

This chapter presents a decidable subtype relation for a core lan-
guage of Julia types that includes covariant tuples, invariant type
constructors, unions, existential types, and distributivity. As discussed
in Section 3.3, it is the interaction of impredicative existential types,
invariant constructors, and unions that makes Julia subtyping so chal-
lenging to decide, which is why I focus on this sublanguage first, in
Section 4.1. In Section 4.3, I extend the core language with nominal
subtyping and the diagonal rule.

The decidability of subtyping, discussed in detail in Section 4.2,
is achieved by restricting existential types allowed to appear inside
invariant constructors. In particular, the restriction limits such inner
existentials to the ones expressible with Java wildcards [Torgersen et al.
2004]. As a result, variable-introducing existential types inside invariant
constructors can be eliminated in accordance with the strategy 2 on
page 26 (Section 3.3). The proposed restriction reduces the space of
types representing heterogeneous data, but retains top-level existential
types, which are used to represent parametric method definitions.
As I show in Chapter 5, very few type annotations in a corpus of
registered Julia packages use full-fledged existential types that are not
representable under the restriction.

In Java, the wildcards mechanism provides use-site variance [Krab Tho-
rup and Torgersen 1999], a restricted form of bounded existential
types [Igarashi and Viroli 2002]. For example, the wildcard type

List<? extends Number>

represents an existential type

∃X<:Number.List<X>.

Thus, the type List<List<?>> represents a heterogeneous list of lists
where inner lists may have different element types. With existential
types, the above type can be written as

List<∃X.List<X>>,

27
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which corresponds to the following Julia type:

Vector{Vector{T} where T}.

Note that with wildcards, every occurrence of “?” introduces a fresh
existential variable that cannot be referenced by name, and accordingly,
has the following properties:

1. occurs in the type exactly once—as an argument of a type con-
structor;

2. is bound immediately outside the containing type constructor;

3. cannot have recursive constraints.

For example, the type List<Pair<?, ?>> represents a heterogeneous list
of pairs List<∃X.∃Y.Pair<X,Y>>. However, there is no way of restricting
both elements of the pair to the same type, which is possible with
full-fledged existential types: List<∃X.Pair<X,X>>.

Due to this “namelessness” property, subtyping of wildcard-induced
existential types can be checked without explicitly introducing exis-
tential variables. For example, the following subtyping

List<? super l extends u> <∶ List<? super l’ extends u’>

holds as long as the bounds of the implicit variable on the right-hand
side contain the bounds of the left-hand side one, that is,

l’ <∶ l and u <∶ u’.

Thus, in the case of Julia subtyping,

wildcard-induced existentials can be allowed inside invariant
constructors without jeopardizing the decidability of subtyping,

as they will not introduce new unification variables.
Conveniently, the Julia language already supports a shorthand nota-

tion corresponding to the proposed restriction1. For instance, types
Vector, Vector{<:Number}, and Vector{>:Int} represent Vector{T} where T,
Vector{T} where T<:Number, and Vector{T} where T>:Int, respectively.

This chapter is organized as follows:

• Section 4.1 provides a complete definition of decidable subtyping
for the core language of Julia types, with the above described
restriction on existential types inside invariant constructors.

1 As of June 2023, it is impossible to specify both lower and upper bounds with this
notation.
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ψ ∶∶= Type signature
∣ ⊤ top
∣ ⊥ bottom
∣ V type variable
∣ ψ1 × ψ2 covariant tuple
∣ N{v, . . .} invariant constr.
∣ ψ1 ∪ ψ2 union
∣ ∃l<:V<:u.ψ existential

V ∶∶= Type variable
∣ X, Y, . . . universal var.
∣ α, β, . . . unification var.

v ∶∶= l≪u Restricted existential var.

τ, l, u ∶∶= Type
∣ ⊤ top
∣ ⊥ bottom
∣ V type variable
∣ τ1 × τ2 covariant tuple
∣ N{v, . . .} invariant constr.
∣ τ1 ∪ τ2 union

Figure 8: Grammar of type signatures and types

• Section 4.2 examines several properties of subtyping, in partic-
ular, decidability of subtyping (Theorem 1) and soundness of
constraint resolution (Theorem 7).

• Section 4.3 extends the core language with nominal subtyping
and the diagonal rule.

4.1 definition of subtyping

The restricted type language is given in Figure 8. For brevity, I switch
to a shorter notation, with ⊤, ⊥, ×, ∪, and ∃ used instead of Any,
Union{}, Tuple, Union, and where. N (a shorthand for N{}) and N{. . .} rep-
resent non-parametric and invariant parametric types, where datatype
declarations are implicit and do not impose restrictions on type pa-
rameters.

The type language distinguishes between more expressive type
signatures ψ and less expressive types τ:

• type signatures ψ correspond to method signatures and allow for
explicit existential types bound outside invariant constructors;
variable bounds cannot be recursive but are allowed to refer to
other variables in scope;

• types τ describe data; they are similar to type signatures but
support only a restricted form of existential types N{v, . . .}.

Semantically, an existential ∃l<:V<:u.ψ represents a union of ψ[V↦τ]
for all valid type instantiations l <∶ τ <∶ u of the type variable V. In the
spirit of Java wildcards, a restricted existential type N{l1≪u1, . . .} repre-
sents ∃l1<:X<:u1.∃ . . . N{X1, . . .}, and N{τ1, . . .} is a shorthand for the
tightly-bounded existential N{τ1≪τ1, . . .}. Note that the same seman-
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tic type can have multiple syntactic representations. For example, the
following pairs of types are equivalent:

Int ≈ Int∪ Int

(Int∪ Flt)× Str ≈ (Int× Str)∪ (Flt× Str)
∃⊥<:V<:Str.V× Int ≈ Str× Int

∃⊥<:V<:⊤.Ref{V} ≈ Ref{⊥≪⊤}

To visually aid the perception of inference rules that define subtyp-
ing, I use two styles of type variables: X, Y, . . . (referred to as universal
variables) and α, β, . . . (referred to as unification variables), with V
used when the distinction is irrelevant. Unification variables, dis-
cussed extensively in Section 3.3, are variables introduced by existen-
tial types on the right-hand side of a subtyping judgment. Universal
variables are variables introduced on the left. In Section 3.2, univer-
sal and unification variables were called left/forall and right/exist,
respectively.

In the next section, I give an overview of the subtyping algorithm
for the type language in Figure 8, with the exact definition and de-
cidability discussed separately. The subtyping algorithm is given by
subtyping rules in Figures 10, 11, and 13, along with the constraint
resolution algorithm in Figure 14. The rules are not syntax-directed,
i.e., there may be multiple rules applicable to a pair of types or type
signatures; however, the rules are analytic [Martin-Löf 1994]: there is a
finite number of applicable rules, and the premises of each rule are
comprised of the subcomponents of its conclusion. Subtyping holds if
there is at least one successful derivation using the subtyping rules.
Due to the presence of distributivity, the algorithm is exponential; Ju-
lia’s efficient implementation of distributive subtyping for unions and
covariant tuples, exponential in time but linear in space, is described
in [Chung et al. 2019].

4.1.1 Overview

Subtyping starts with subtyping of type signatures (Figure 13):

Γ ∣ ∆ ⊢ ψ<: ψ
′.

Here, all explicit existential variables from ψ (universal variables)
are introduced into environment Γ (defined in Figure 9), and variables
from ψ

′ (unification variables) are introduced into ∆. To reach all
existential types, it may be necessary to apply distributivity and go
through union types. The following derivation provides an example:
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<discussed below>

X<:Int ∣ α ⊢ Str× Ref{X}<:⊤× Ref{α}
SS-Types

X<:Int ∣ ⋅ ⊢ Str× Ref{X}<:∃α.(⊤× Ref{α})
SS-ExistRight

⋅ ∣ ⋅ ⊢ Str× (∃X<:Int.Ref{X})<:∃α.(⊤× Ref{α})
SS-ExistLeft

⋅ ∣ ⋅ ⊢ Str× (∃X<:Int.Ref{X})<: Int∪∃α.(⊤× Ref{α})
SS-UnionRight

First, SS-UnionRight picks the second type on the right. Second,
because of the distributivity, the existential binding on the left can
be pulled through the tuple by SS-ExistLeft. Finally, SS-ExistRight

opens the existential on the right.
Once the algorithm reaches types on both sides, i.e.

Γ ∣ ∆ ⊢ τ <: τ
′,

subtyping should succeed if there is a valid substitution ρ of unifica-
tion variables from ∆ such that ρ(τ)<: ρ(τ

′). This is done in two steps
(SS-Types):

1. constrained subtyping Γ ∣ dom(∆) ⊢ τ ⋖• τ
′
↝ K generates a

constraint set K;

2. Solve(Γ; ∆; K) resolves the constraints.

When constrained subtyping (Figure 11) takes over,

Γ ∣ H ⊢ τ ⋖• τ
′
↝ K where H = dom(∆),

the algorithm checks subtyping, possibly generating constraints l ≤ α

and α ≤ u on unification variables α from H that may appear in τ
′.

This step ignores the declared unification variable bounds, as empha-
sized by the environment H as opposed to ∆. Initially, all unification
variables are located on the right, which is indicated with • on the
right of ⋖•. In the case of invariant constructors, the right-to-left
subtyping check is performed by Γ ∣ H ⊢ τ

′ •⋖ τ ↝ K, with all unifi-
cation variables being located on the left. Thus, constrained subtyping
maintains the invariant that unification variables always appear on at
most one side of the subtyping judgment, which prevents the problem
of mutually constraining unification variables discussed in Section 3.3.
Because of this, types l, u in generated constraints are guaranteed
to be free from unification variables. Thus, the running example above
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ζ ∶∶= □ ∣ ζ × ψ ∣ ψ× ζ Distributivity context for type signatures
δ ∶∶= □ ∣ δ× τ ∣ τ × δ Distributivity context for types

Γ, ∆ ∶∶= ⋅ ∣ Γ, l<:V<:u Type variable environment
H ∶∶= ⋅ ∣ H, V Type variable list

K ∶∶= {l ≤ α, α ≤ u, . . .} Constraint set

Figure 9: Auxiliary definitions

continues as follows, generating the constraint set {X ≤ α, α ≤ X}.

SC-Top

X<:Int ∣ α ⊢ Int⋖•⊤ ↝ ∅

SC-UVarRight

X<:Int ∣ α ⊢ X⋖• α ↝ {X ≤ α}

SC-UVarLeft

X<:Int ∣ α ⊢ α •⋖X ↝ {α ≤ X}
X<:Int ∣ α ⊢ Ref{X}⋖•Ref{α} ↝ {X ≤ α, α ≤ X}

X<:Int ∣ α ⊢ Str× Ref{X}⋖•⊤× Ref{α} ↝ {X ≤ α, α ≤ X}

If constrained subtyping succeeds and generates a constraint set K,
the constraints are resolved by Solve(Γ; ∆; K) (Figure 14). Namely, all
constraints on the same unification variable are checked for consistency
with each other and with the declared variable bounds from ∆. If
all the constraints are consistent, the variable is instantiated with the
smallest type—a union of all (declared and generated) lower bounds.
The consistency of constraints is checked with:

• constrained subtyping Γ ∣ H ⊢ l •⋖ τ ↝ K or Γ ∣ H ⊢

τ ⋖• u ↝ K, to check that generated unification-free constraints
τ are consistent with declared bounds l and u; constrained
subtyping is necessary because unification variable bounds may
reference other unification variables;

• unification-free subtyping of types Γ ⊢ l <: u (Figure 10), to
check that generated constraints are consistent with each other.

In the running example, the generated bound X of the unification
variable α is trivially consistent with the declared bounds ⊥ and ⊤;
furthermore, X<:Int ⊢ X<: X by reflexivity, so the unification variable
α is instantiated with X.

In unification-free subtyping Γ ⊢ τ <: τ
′, which is used for consis-

tency checks, variables are treated as universal. For example, with the
exception of the reflexive case, a variable V is a subtype of τ only if
the upper bound u of V is a subtype of τ. This is similar to subtyping
of left/forall variables in Figure 6, Section 3.2.

Next, I present the exact definitions of:

• unification-free subtyping of types Γ ⊢ τ <: τ
′ (Section 4.1.2);
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• constrained subtyping of types Γ ∣ H ⊢ τ ⋖ τ
′

↝ K (Sec-
tion 4.1.3);

• constraint resolution Solve(Γ; ∆; K) (Section 4.1.4);

• signature subtyping Γ ∣ ∆ ⊢ ψ<: ψ
′ (Section 4.1.4).

For simplicity of presentation, I assume the following variable name
convention based on Barendregt’s convention:

Definition 1 (Variable name convention). Everywhere in definitions and
proofs, the following conditions hold:

• all bound variables in τ, ψ are different from each other and from free
variables;

• all variables in Γ, ∆, H are different from each other;

• whenever both Γ and ∆ or Γ and H appear in the same judgment,
dom(Γ)∩ dom(∆) = ∅ and dom(Γ)∩ dom(H) = ∅;

• whenever a variable environment and a type/type signature appear
in the same judgment, bound variables of the type/type signature are
different from variables in the environment;

• whenever multiple types/type signatures appear in the same judgment,
their bound variables are different.

These conditions can be maintained by alpha-renaming.

While named type variables and the variable name convention are
used for readability, they can be replaced by De Bruijn indices [de
Bruijn 1972]. In the case of subtyping judgments with two environ-
ments, i.e., signature subtyping Γ ∣ ∆ ⊢ ψ<: ψ

′ and constrained
subtyping Γ ∣ H ⊢ τ ⋖ τ

′
↝ K, variable bindings in ψ/τ and ψ

′/τ
′

need to range over different sets of indices to distinguish between
universal variables from Γ and unification variables from ∆/H.

4.1.2 Unification-Free Subtyping of Types

Unification-free subtyping of types is given in Figure 10.
Following the semantic subtyping approach, covariant tuples dis-

tribute over union types (ST-UnionLeft), and tuples containing the
bottom type are subtypes of all types (ST-Bot). Both of these rules
are expressed with the distributivity context δ defined in Figure 9,
which allows unions and ⊥ to be “pulled through” covariant tuples.
Although in Julia, only the proper bottom type ⊥ is a subtype of all
types (but not δ[⊥]), I consider the more general ST-Bot in accordance
with semantic subtyping. To obtain Julia’s semantics, ST-Bot should
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Γ ⊢ τ <: τ

ST-Top

Γ ⊢ τ <:⊤

ST-Bot

Γ ⊢ δ[⊥]<: τ
′

ST-VarRefl

l<:V<:u ∈ Γ

Γ ⊢ V<: V

ST-VarLeft

l<:V<:u ∈ Γ Γ ⊢ δ[u]<: τ
′

Γ ⊢ δ[V]<: τ
′

ST-VarRight

l<:V<:u ∈ Γ Γ ⊢ τ <: l

Γ ⊢ τ <: V

ST-Tuple

Γ ⊢ τ1 <: τ
′
1 Γ ⊢ τ2 <: τ

′
2

Γ ⊢ τ1 × τ2 <: τ
′
1 × τ

′
2

ST-Inv

∀i ∈ 1..n. Γ ⊢ vi <: v′i

Γ ⊢ N{v1, . . . , vn}<: N{v′1, . . . , v′n}

ST-UnionLeft

Γ ⊢ δ[τ1]<: τ
′ Γ ⊢ δ[τ2]<: τ

′

Γ ⊢ δ[τ1 ∪ τ2]<: τ
′

ST-UnionRight

∃i. Γ ⊢ τ <: τ
′
i

Γ ⊢ τ <: τ
′
1 ∪ τ

′
2

Γ ⊢ v<: v

Γ ⊢ l′ <: l Γ ⊢ u<: u′

Γ ⊢ l≪u<: l′≪u′

Γ ⊢ δ<: δ

Γ ⊢ □<:□

Γ ⊢ δ1 <: δ
′
1 Γ ⊢ τ2 <: τ

′
2

Γ ⊢ δ1 × τ2 <: δ
′
1 × τ

′
2

Γ ⊢ τ1 <: τ
′
1 Γ ⊢ δ2 <: δ

′
2

Γ ⊢ τ1 × δ2 <: τ
′
1 × δ

′
2

Figure 10: Subtyping of types (free from unification variables)
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be written as Γ ⊢ ⊥<: τ
′; the change does not affect any properties

of subtyping discussed in this chapter.
Subtyping of variables corresponds to the intuition that subtyping

should hold for all their valid instantiations. Thus, when a variable
appears covariantly on the left, it is replaced with the upper bound
(ST-VarLeft). When a variable appears on the right, it is replaced with
the lower bound (ST-VarRight). The ST-VarLeft rule has to use the
distributivity context, for the upper bound can be a union or bottom
type. Without δ, the following judgment would not be derivable:

⊥<:V<:(Int∪ Flt) ⊢ V×⊤<: Int×⊤∪ Flt×⊤.

Finally, subtyping of invariant constructors/restricted existential
types ensures that for each type parameter, the bounds on the left are
contained within the bounds on the right. This corresponds to the
intuition that for all valid instantiations of a variable on the left, there
should be a valid instantiation of a variable on the right. For example,
subtyping

⊢ Ref{⊥≪Int}<:Ref{⊥≪⊤}

holds, whereas

⊢ Ref{⊥≪Int} ≮∶ Ref{Int≪⊤}

does not.
Subtyping of distributivity contexts Γ ⊢ δ<: δ

′ is useful for proofs
but is not used in the definition of Γ ⊢ τ <: τ

′.

4.1.3 Constrained Subtyping of Types

Constrained subtyping of types is given in Figure 11. The figure
defines two mutually recursive relations,

Γ ∣ H ⊢ τ •⋖ τ
′
↝ K and Γ ∣ H ⊢ τ ⋖• τ

′
↝ K,

where the former is used when unification variables appear on the
left, and the latter is used when unification variables appear on the
right. For brevity, similar rules of the two relations are abbreviated
with a single rule

Γ ∣ H ⊢ τ ⋖ τ
′
↝ K.

Most of the rules of constrained subtyping match the rules of
unification-free subtyping, with the only difference being propagation
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Γ ∣ H ⊢ τ ⋖ τ ↝ K

SC-Top

Γ ∣ H ⊢ τ ⋖⊤ ↝ ∅

SC-Bot

Γ ∣ H ⊢ δ[⊥]⋖ τ
′
↝ ∅

SC-UBot

α ∈ H

Γ ∣ H ⊢ δ[α]•⋖ τ
′
↝ {α ≤ ⊥}

SC-VarRefl

l<:X<:u ∈ Γ

Γ ∣ H ⊢ X⋖X ↝ ∅

SC-UVarLeft

α ∈ H

Γ ∣ H ⊢ α •⋖ τ
′
↝ {α ≤ τ

′}

SC-UVarRight

α ∈ H

Γ ∣ H ⊢ τ ⋖• α ↝ {τ ≤ α}

SC-VarLeft

l<:X<:u ∈ Γ Γ ∣ H ⊢ δ[u]⋖ τ
′
↝ K

Γ ∣ H ⊢ δ[X]⋖ τ
′
↝ K

SC-VarRight

l<:X<:u ∈ Γ Γ ∣ H ⊢ τ ⋖ l ↝ K

Γ ∣ H ⊢ τ ⋖X ↝ K

SC-Tuple

Γ ∣ H ⊢ τ1 ⋖ τ
′
1 ↝ K1 Γ ∣ H ⊢ τ2 ⋖ τ

′
2 ↝ K2

Γ ∣ H ⊢ τ1 × τ2 ⋖ τ
′
1 × τ

′
2 ↝ K1 ∪K2

SC-Inv

∀i ∈ 1..n. Γ ∣ H ⊢ vi ⋖ v′i ↝ Ki

Γ ∣ H ⊢ N{v1, . . . , vn}⋖ N{v′1, . . . , v′n} ↝ ⋃n
i=1 Ki

SC-UnionLeft

Γ ∣ H ⊢ δ[τ1]⋖ τ
′
↝ K1 Γ ∣ H ⊢ δ[τ2]⋖ τ

′
↝ K2

Γ ∣ H ⊢ δ[τ1 ∪ τ2]⋖ τ
′
↝ K1 ∪K2

SC-UnionRight

∃i. Γ ∣ H ⊢ τ ⋖ τ
′
i ↝ K

Γ ∣ H ⊢ τ ⋖ τ
′
1 ∪ τ

′
2 ↝ K

SC-UVar-UnionRight

α ∈ H α1, α2 fresh Γ ∣ H, α1 ⊢ δ[α1]•⋖ τ
′
1 ↝ K1 Γ ∣ H, α2 ⊢ δ[α2]•⋖ τ

′
2 ↝ K2

K1 = K′1⋃n
i=1{α1 ≤ ui

1} α1 ∉ K′1 K2 = K′2⋃m
j=1{α2 ≤ u

j
2} α2 ∉ K′2

K′ = {α ≤ ⨅n
i=1 ui

1 ∪⨅m
j=1 u

j
2}

Γ ∣ H ⊢ δ[α]•⋖ τ
′
1 ∪ τ

′
2 ↝ K′1 ∪K′2 ∪K′

Γ ∣ H ⊢ v⋖ v ↝ K

Γ ∣ H ⊢ l′ ⋖• l ↝ Kl Γ ∣ H ⊢ u •⋖ u′ ↝ Ku

Γ ∣ H ⊢ l≪u •⋖ l′≪u′ ↝ Kl ∪Ku

Γ ∣ H ⊢ l′ •⋖ l ↝ Kl Γ ∣ H ⊢ u⋖• u′ ↝ Ku

Γ ∣ H ⊢ l≪u⋖• l′≪u′ ↝ Kl ∪Ku

Figure 11: Constrained subtyping of types

Every rule with the symbol ⋖ is a shorthand for two rules, one where
all occurrences of ⋖ are replaced with •⋖, and another where all occur-
rences of ⋖ are replaced with ⋖•. Thus, the figure defines two mutually
recursive relations, Γ ∣ H ⊢ τ •⋖ τ

′
↝ K and Γ ∣ H ⊢ τ ⋖• τ

′
↝ K.



4.1 definition of subtyping 37

of constraints from recursive calls. For instance, compare subtyping
of tuples:

Γ ⊢ τ1 <: τ
′
1 Γ ⊢ τ2 <: τ

′
2

Γ ⊢ τ1 × τ2 <: τ
′
1 × τ

′
2

Γ ∣ H ⊢ τ1 ⋖ τ
′
1 ↝ K1 Γ ∣ H ⊢ τ2 ⋖ τ

′
2 ↝ K2

Γ ∣ H ⊢ τ1 × τ2 ⋖ τ
′
1 × τ

′
2 ↝ K1 ∪K2

In fact, when types do not contain unification variables, constrained
and unification-free subtyping coincide (Lemma 12).

The only case where Γ ∣ H ⊢ τ •⋖ τ
′

↝ K needs to call
Γ ∣ H ⊢ τ ⋖• τ

′
↝ K and vice versa is subtyping of invariant

constructors/restricted existential types (SC-Inv): here, the right-to-
left check Γ ∣ H ⊢ l′ ⋖ l ↝ K moves unification variables to the
opposite side.

All the rules unique to constrained subtyping are highlighted in
gray: SC-UBot, SC-UVarLeft, SC-UVarRight, SC-UVar-UnionRight.
These are the rules that generate new constraints on unification vari-
ables rather than simply propagate them. The most interesting rule
is SC-UVar-UnionRight: it addresses the case where the unification
variable could be instantiated with a union. Consider the following
example:

?

⋅ ∣ α ⊢ α×⊤•⋖ Int×⊤∪ Flt×⊤ ↝ ?

. . .

⋅ ∣ α ⊢ Int×⊤⋖• α×⊤ ↝ {Int ≤ α}
. . .

⋅ ∣ α ⊢ Int×⊤∪ Flt×⊤⋖• α×⊤ ↝ {Int ≤ α,Flt ≤ α}
⋅ ∣ α ⊢ Ref{Int×⊤∪ Flt×⊤}⋖•Ref{α×⊤} ↝ ?

Without SC-UVar-UnionRight, the best way to proceed with

⋅ ∣ α ⊢ α×⊤•⋖ Int×⊤∪ Flt×⊤ ↝ ?

(besides SC-UBot, which requires {α ≤ ⊥}) would be to use SC-
UnionRight and pick either Int ×⊤ or Flt ×⊤ on the right. This
would result in constraining α with either {α ≤ Int} or {α ≤ Flt}. Taken
together with {Int ≤ α,Flt ≤ α} from the right-hand side derivation,
either of these constraints would render the resulting set of constraints
unsatisfiable. However, subtyping

⋅ ∣ α ⊢ Ref{Int×⊤∪ Flt×⊤}⋖•Ref{α×⊤} ↝ ?

clearly holds if α is instantiated with Int∪ Flt. Thus, when α occurs
on the left covariantly, in a position where unification-free subtyping
could appeal to ST-UnionLeft, the rule SC-UVar-UnionRight allows
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for a more permissive, union upper bound. Intuitively, when the right-
hand side is a union, the rule proceeds as if the unification variable α

stands for the union α1 ∪ α2 such that, distributively, δ[α1] and δ[α2]
are subtypes of τ

′
1 and τ

′
2, respectively. Consider the application of

SC-UVar-UnionRight to the right-to-left check in the example:

. . .

⋅ ∣ α, α1 ⊢ α1 ×⊤•⋖ Int×⊤ ↝ {α1 ≤ Int}
. . .

⋅ ∣ α, α2 ⊢ α2 ×⊤•⋖Flt×⊤ ↝ {α2 ≤ Flt}
⋅ ∣ α ⊢ α×⊤•⋖ Int×⊤∪ Flt×⊤ ↝ {α ≤ Int∪ Flt}

Now the resulting constraint set {α ≤ Int ∪ Flt, Int ≤ α,Flt ≤ α} is
satisfiable. Note that the rule SC-UVar-UnionRight needs to be
careful when the constraint set Ki produced by the premise

Γ ∣ H, αi ⊢ δ[αi]•⋖ τ
′
i ↝ Ki

contains multiple upper-bound constraints on αi, because all those
constraints need to hold at the same time. For instance, consider the
following example, where τa <: τ

′
a and τa is incomparable with τb:

⋅ ∣ α ⊢ α× α •⋖(τa × τa ∪ τ
′
a × τb)∪ τb ×⊤ ↝ ?

There are multiple ways to instantiate α (e.g., with ⊥), but the most
permissive constraint set can be obtained by first applying SC-UVar-
UnionRight to the left occurrence of α:

. . .

⋅ ∣ α, α1 ⊢ α1 × α •⋖ τa × τa ∪ τ
′
a × τb ↝ ?

. . .

⋅ ∣ α, α2 ⊢ α2 × α •⋖ τb ×⊤ ↝ {α2 ≤ τb}
⋅ ∣ α ⊢ α× α •⋖(τa × τa ∪ τ

′
a × τb)∪ τb ×⊤ ↝ ?

Next, let us focus on the left premise and apply the same rule to the
remaining α:

. . .

⋅ ∣ α, α1, α3 ⊢ α1 × α3 •⋖ τa × τa ↝ {α1 ≤ τa, α3 ≤ τa}
. . .

⋅ ∣ α, α1, α4 ⊢ α1 × α4 •⋖ τ
′
a × τb ↝ {α1 ≤ τ

′
a, α4 ≤ τb}

⋅ ∣ α, α1 ⊢ α1 × α •⋖ τa × τa ∪ τ
′
a × τb ↝ {α1 ≤ τa, α1 ≤ τ

′
a, α ≤ τa ∪ τb}

There are two constraints on α1, both of which have to be satisfied.
Thus, SC-UVar-UnionRight merges them into one type using the in-
tersection function τa ⊓⋅ τ

′
a, defined in Figure 12. Intersection produces

a type that is a subtype of both τa and τ
′
a: in this case, the smaller type

τa. Thus, the original subtyping judgment succeeds:

⋅ ∣ α ⊢ α× α •⋖(τa× τa∪ τ
′
a× τb)∪ τb×⊤ ↝ {α ≤ τa∪ τb, α ≤ τa∪ τb}
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τ ⊓Γ τ
′

τ ⊓Γ τ
′

= τ if Γ ⊢ τ <: τ
′

τ ⊓Γ τ
′

= τ
′ if Γ ⊢ τ

′
<: τ

τ1 ∪ τ2 ⊓Γ τ
′

= (τ1 ⊓Γ τ
′)∪ (τ2 ⊓Γ τ

′)
τ ⊓Γ τ

′
1 ∪ τ

′
2 = (τ ⊓Γ τ

′
1)∪ (τ ⊓Γ τ

′
2)

V ⊓Γ τ
′

= l ⊓Γ τ
′ where l<:V<:u ∈ Γ

τ ⊓Γ V = τ ⊓Γ l where l<:V<:u ∈ Γ
τ1 × τ2 ⊓Γ τ

′
1 × τ

′
2 = (τ1 ⊓Γ τ

′
1)× (τ2 ⊓Γ τ

′
2)

N{. . . , li≪ui, . . .} ⊓Γ N{. . . , l′i≪u′i, . . .} = N{. . . , (li ∪ l′i)≪(ui ⊓Γ u′i), . . .}
where ∀i. Γ ⊢ (li ∪ l′i)<:(ui ⊓Γ u′i)

τ ⊓Γ τ
′

= ⊥ otherwise

Figure 12: Intersection (⊓Γ) of types

Some cases, such as ⊥, ⊤, and the same type variable, are absent be-
cause they are covered by the cases Γ ⊢ τ <: τ

′ and Γ ⊢ τ
′
<: τ.

(The two occurrences of the same constraint are due to the two separate
applications of SC-UVar-UnionRight, α1/α2 and α3/α4.)

4.1.4 Signature Subtyping

The final piece of the subtyping algorithm is subtyping of top-level
signatures, which is given in Figure 13:

Γ ∣ ∆ ⊢ ψ<: ψ
′.

This step introduces all explicitly bound existential variables to envi-
ronments Γ and ∆. Similarly to subtyping of types, the rules SS-Bot,
SS-VarLeft, SS-UnionLeft, and SS-InvLeft use the distributivity
context—in the case of type signatures, ζ. The rule SS-InvLeft is
needed to account for the distributivity of restricted existential types,
similarly to explicit existentials. For example:

⊥<:α<:⊤ ∣ α ⊢ Ref{X}× Int⋖•Ref{α}×⊤ ↝ {X ≤ α, α ≤ X} . . .

⊥<:X<:⊤ ∣ ⊥<:α<:⊤ ⊢ Ref{X}× Int<:Ref{α}×⊤
SS-Types

⋅ ∣ ⊥<:α<:⊤ ⊢ Ref{⊥≪⊤}× Int<:Ref{α}×⊤
SS-InvLeft

⋅ ∣ ⋅ ⊢ Ref{⊥≪⊤}× Int<:∃α.Ref{α}×⊤
SS-ExistRight

Without SS-InvLeft, constrained subtyping

⋅ ∣ α ⊢ Ref{⊥≪⊤}× Int⋖•Ref{α}×⊤ ↝ {⊤ ≤ α, α ≤ ⊥}

would generate unsatisfiable constraints.
Notice the absence of rules for subtyping tuples and invariant con-

structors: once types are reached on both sides, the rule SS-Types dele-
gates further checks to constrained subtyping Γ ∣ H ⊢ τ ⋖• τ

′
↝ K,

followed by constraint resolution Solve(Γ; ∆; K). The algorithm Solve,
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Γ ∣ ∆ ⊢ ψ<: ψ

SS-Top

Γ ∣ ∆ ⊢ ψ<:⊤

SS-Bot

Γ ∣ ∆ ⊢ ζ[⊥]<: ψ
′

SS-VarLeft

l<:X<:u ∈ Γ Γ ∣ ∆ ⊢ ζ[u]<: ψ
′

Γ ∣ ∆ ⊢ ζ[X]<: ψ
′

SS-UnionLeft

Γ ∣ ∆ ⊢ ζ[ψ1]<: ψ
′ Γ ∣ ∆ ⊢ ζ[ψ2]<: ψ

′

Γ ∣ ∆ ⊢ ζ[ψ1 ∪ ψ2]<: ψ
′

SS-InvLeft

X fresh Γ, l<:X<:u ∣ ∆ ⊢ ζ[N{. . . , X, . . .}]<: ψ
′

Γ ∣ ∆ ⊢ ζ[N{. . . , l≪u, . . .}]<: ψ
′

SS-ExistLeft

Γ, l<:X<:u ∣ ∆ ⊢ ζ[ψ]<: ψ
′

Γ ∣ ∆ ⊢ ζ[∃l<:X<:u.ψ]<: ψ
′

SS-UnionRight

∃i. Γ ∣ ∆ ⊢ ψ<: ζ[ψ′i]
Γ ∣ ∆ ⊢ ψ<: ζ[ψ′1 ∪ ψ

′
2]

SS-ExistRight

Γ ∣ ∆, l<:α<:u ⊢ ψ<: ζ[ψ′]
Γ ∣ ∆ ⊢ ψ<: ζ[∃l<:α<:u.ψ′]

SS-Types

Γ ∣ dom(∆) ⊢ τ ⋖• τ
′
↝ K Solve(Γ; ∆; K) = ρ

Γ ∣ ∆ ⊢ τ <: τ
′

Figure 13: Subtyping of type signatures

defined in Figure 14, checks for consistency of all the constraints on
each unification variable, starting with the last introduced one in
∆. Because variable bounds can refer to earlier-introduced variables,
generated constraints are checked for consistency with declared con-
straints using constrained subtyping. The resulting constraints are
then checked recursively for the smaller environment ∆.

Note that the constraint resolution algorithm does not need to
compute ρ to check the consistency of constraints: the substitution
is computed so that multiple dispatch can instantiate type variables
in parametric method definitions. However, despite Solve(Γ; ∆; K)
computing the smallest valid substitution for the given K, there can
be multiple valid derivations of constrained subtyping that produce
different sets of constraints. For example,

⋅ ∣ α ⊢ Ref{Int}∪ Ref{Str}⋖•⊤∪ Ref{α} ↝ . . .

is derivable with three different sets of constraints, solved by α↦⊥,
α↦ Int, and α↦Str. Therefore, the dispatch mechanism would need to
decide which derivation to pick. And while, in this example, α↦⊥ is
the smallest valid instantiation of α, the smallest one does not always
exist globally. For example,

⋅ ∣ α, β ⊢ Ref{Int}∪ Ref{Str}⋖•Ref{α}∪ Ref{β} ↝ . . .
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Solve (Γ; ⋅; K)
return []

Solve (Γ; ∆, l<:α<:u; K)
Kα ← {l′ ≤ α ∣ l′ ≤ α ∈ K}∪ {α ≤ u′ ∣ α ≤ u′ ∈ K} ;
K′ ← K \ Kα ;
H ← dom(∆);
foreach li ≤ α, α ≤ uj ∈ Kα do Γ ⊢ li <: uj ;
foreach li ≤ α ∈ Kα do Γ ∣ H ⊢ li ⋖• u ↝ Kli ;
foreach α ≤ uj ∈ Kα do Γ ∣ H ⊢ l •⋖ uj ↝ Kuj ;

ρ ← Solve(Γ; ∆; K′⋃i Kli ⋃j Kuj);
return ρ[α↦ρ(l)⋃i li]

Figure 14: Constraints resolution algorithm Solve(Γ; ∆; K)

can be satisfied with either [α↦ Int, β↦Str] or [α↦Str, β↦ Int]. Since
the number of possible subtyping derivations (and corresponding
constraint sets) is finite, it would be possible for the dispatch mech-
anism to compare substitutions produced by Solve(Γ; ∆; K) to pick
the smallest one when it exists, or apply another selection mechanism
when substitutions are incomparable.

Examining signature subtyping, the rule SS-UnionLeft may seem
surprising because the two premises Γ ∣ ∆ ⊢ ζ[ψ1]<: ψ

′ and Γ ∣ ∆ ⊢

ζ[ψ2]<: ψ
′ are not required to have consistent instantiations of ∆. For

example, in the following derivation,

⋅ ∣ α ⊢ Ref{Int}<:Ref{α}
⋅ ∣ α ⊢ Ref{Int}<:Ref{α}∪Vector{α}

⋅ ∣ α ⊢ Vector{Str}<:Vector{α}
⋅ ∣ α ⊢ Vector{Str}<:Ref{α}∪Vector{α}

⋅ ∣ α ⊢ Ref{Int}∪Vector{Str}<:Ref{α}∪Vector{α}

α gets instantiated with Int in the first premise and Str in the second.
This is correct because the types ∃α.(ψ1 ∪ ψ2) and (∃α.ψ1)∪ (∃α.ψ2)
are semantically equivalent, with the equivalence being derivable in
Julia as well:

� �
julia> Union{Ref{Int}, Vector{String}} <:

Union{Ref{T}, Vector{T}} where T

true

# t1 == t2 holds when t1 <: t2 and t2 <: t1

julia> Union{Ref{T} where T, Vector{T} where T} ==

Union{Ref{T}, Vector{T}} where T

true� �
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Γ ⊢ τ

Γ ⊢ ⊤ Γ ⊢ ⊥

l<:V<:u ∈ Γ

Γ ⊢ V

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 × τ2

N has arity n ∀i ∈ 1..n. Γ ⊢ vi

Γ ⊢ N{v1, . . . , vn}

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 ∪ τ2

Γ ⊢ v

Γ ⊢ l Γ ⊢ u Γ ⊢ l <: u

Γ ⊢ l≪u

Γ ⊢ δ

Γ ⊢ □

Γ ⊢ δ Γ ⊢ τ

Γ ⊢ δ× τ

Γ ⊢ τ Γ ⊢ δ

Γ ⊢ τ × δ

Γ ⊢ ψ

Γ ⊢ ⊤ Γ ⊢ ⊥

l<:V<:u ∈ Γ

Γ ⊢ V

Γ ⊢ ψ1 Γ ⊢ ψ2

Γ ⊢ ψ1 × ψ2

N has arity n ∀i ∈ 1..n. Γ ⊢ vi

Γ ⊢ N{v1, . . . , vn}

Γ ⊢ ψ1 Γ ⊢ ψ2

Γ ⊢ ψ1 ∪ ψ2

Γ ⊢ l Γ ⊢ u Γ ⊢ l <: u Γ, l<:V<:u ⊢ ψ

Γ ⊢ ∃l<:V<:u.ψ

Γ ∣ H ⊢ τ

l<:X<:u ∈ Γ

Γ ∣ H ⊢ X

α ∈ H

Γ ∣ H ⊢ α Γ ∣ H ⊢ ⊤ Γ ∣ H ⊢ ⊥

Γ ∣ H ⊢ τ1 Γ ∣ H ⊢ τ2

Γ ∣ H ⊢ τ1 × τ2

N has arity n ∀i ∈ 1..n. Γ ∣ H ⊢ vi

Γ ∣ H ⊢ N{v1, . . . , vn}

Γ ∣ H ⊢ τ1 Γ ∣ H ⊢ τ2

Γ ∣ H ⊢ τ1 ∪ τ2

⊢ Γ

⊢ ⋅

⊢ Γ Γ ⊢ l Γ ⊢ u Γ ⊢ l <: u

⊢ Γ, l<:V<:u

Figure 15: Validity of types and type signatures
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4.1.5 Validity of Types and Type Signatures

To provide transitivity and prevent the subtyping algorithm from
getting stuck, it should be called with valid types and type signatures,
as defined in Figure 15. In particular:

• Γ ⊢ τ <: τ
′ requires that Γ ⊢ τ, τ

′;

• Γ ∣ H ⊢ τ ⋖• τ
′
↝ K requires that Γ ⊢ τ and Γ ∣ H ⊢ τ

′;

• Γ ∣ H ⊢ τ •⋖ τ
′
↝ K requires that Γ ∣ H ⊢ τ and Γ ⊢ τ

′;

• Γ ∣ ∆ ⊢ ψ<: ψ
′ requires that Γ ⊢ ψ and Γ++∆ ⊢ ψ

′, where
Γ++∆ concatenates two environments.

The validity check ensures that free variables are bound in correspond-
ing environments and that variable bounds are non-recursive and
consistent.

The consistency of declared variable bounds is necessary for transi-
tivity. This requirement is a departure from Julia, where types like

Ref{T} where Any<:T<:Int

are considered valid. Although semantically, such types denote empty
sets and cannot be instantiated, Julia does not consider them to be
subtypes of Union{}:

� �
julia> (Ref{T} where Any<:T<:Int){Int}

ERROR: TypeError: in Ref, in T, expected Any<:T<:Int

julia> (Ref{T} where Any<:T<:Int) <: Union{}

false� �
4.2 properties of subtyping

This section defines and proves multiple properties about subtyping,
most importantly:

• decidability of subtyping (Theorem 1);

• transitivity of unification-free subtyping (Theorem 3);

• soundness of constrained subtyping (Theorem 6) and constraint
resolution (Theorem 7).

A detailed discussion of the decidability is given in Section 4.2.1. At
a high-level, the subtyping algorithm terminates because:
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M(Γ; τ)
M(Γ;⊤) = 1
M(Γ;⊥) = 1
M( ⋅ ; V) = 1
M(Γ, l<:V<:u; V) = 1+M(Γ; l)+M(Γ; u)
M(Γ, l<:V′<:u; V) = M(Γ; V)
M(Γ; τ1 × τ2) = 1+M(Γ; τ1)+M(Γ; τ2)
M(Γ; N{v1, . . . , vn}) = 1+M(Γ; v1)+ . . .+M(Γ; vn)
M(Γ; τ1 ∪ τ2) = 1+M(Γ; τ1)+M(Γ; τ2)

M(Γ; v)
M(Γ; τ≪τ) = M(Γ; τ)
M(Γ; l≪u) = 2× (1+M(Γ; l)+M(Γ; u))

M(Γ; δ)
M(Γ;□) = 0
M(Γ; δ× τ) = 1+M(Γ; δ)+M(Γ; τ)
M(Γ; τ × δ) = 1+M(Γ; τ)+M(Γ; δ)

M(Γ; ψ)
M(Γ;⊤) = 1
M(Γ;⊥) = 1
M( ⋅ ; V) = 1
M(Γ, l<:V<:u; V) = 1+M(Γ; l)+M(Γ; u)
M(Γ, l<:V′<:u; V) = M(Γ; V)
M(Γ; ψ1 × ψ2) = 1+M(Γ; ψ1)+M(Γ; ψ2)
M(Γ; N{v1, . . . , vn}) = 1+M(Γ; v1)+ . . .+M(Γ; vn)
M(Γ;∃l<:V<:u.ψ) = 1+M(Γ; l)+M(Γ; u)+M(Γ, l<:V<:u; ψ)

M(Γ; ζ)
M(Γ;□) = 0
M(Γ; ζ × ψ) = 1+M(Γ; ζ)+M(Γ; ψ)
M(Γ; ψ× ζ) = 1+M(Γ; ψ)+M(Γ; ζ)

Figure 16: Measure of types and type signatures

1. for each recursive call of unification-free subtyping, constrained
subtyping, and signature subtyping, the arguments are cumu-
latively smaller with respect to a measure function defined in
Figure 16;

2. constraint resolution terminates because consistency checks ter-
minate and the ∆ argument decreases with each recursive call.

Particularly interesting elements of the proofs are highlighted in
bold.

4.2.1 Decidability

To show the decidability of the subtyping algorithm, I will use the
measure M of types and type signatures defined in Figure 16. The
measure function is defined recursively and is similar to syntactic size,
except for the treatment of type variables: for variables from Γ, the
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∣τ∣
∣⊤∣ = 1
∣⊥∣ = 1
∣V∣ = 1
∣τ1 × τ2∣ = 1+ ∣τ1∣+ ∣τ2∣
∣N{v1, . . . , vn}∣ = 1+ ∣v1∣+ . . .+ ∣vn∣
∣τ1 ∪ τ2∣ = 1+ ∣τ1∣+ ∣τ2∣

∣v∣
∣l≪u∣ = ∣l∣+ ∣u∣

∣δ∣
∣□ ∣ = 0
∣δ× τ∣ = 1+ ∣δ∣+ ∣τ∣
∣τ × δ∣ = 1+ ∣τ∣+ ∣δ∣

∣ψ∣
∣⊤∣ = 1
∣⊥∣ = 1
∣V∣ = 1
∣ψ1 × ψ2∣ = 1+ ∣ψ1∣+ ∣ψ2∣
∣N{v1, . . . , vn}∣ = 1+ ∣v1∣+ . . .+ ∣vn∣
∣ψ1 ∪ ψ2∣ = 1+ ∣ψ1∣+ ∣ψ2∣
∣∃l<:V<:u.ψ∣ = 1+ ∣l∣+ ∣u∣+ ∣ψ∣

∣Γ∣
∣ ⋅ ∣ = 0
∣Γ, l<:V<:u∣ = ∣Γ∣+ ∣l∣+ ∣u∣

∣ζ∣
∣□ ∣ = 0
∣ζ × ψ∣ = 1+ ∣ζ∣+ ∣ψ∣
∣ψ× ζ∣ = 1+ ∣ψ∣+ ∣ζ∣

Figure 17: Syntactic size

measure of a variable includes the measures of its bounds. The defini-
tion of measure for restricted existential variables v reflects the fact that
N{v1, . . . , vn} represents both invariant constructors and restricted ex-
istential types. When vi represents a single type τi, i.e. vi = τi≪τi, its
measure is simply the measure of the type τi in N{. . . , τi, . . .}. Other-
wise, vi = li≪ui represents an existential type with a single occurrence
of the bound variable, ∃li<:Vi<:ui.N{. . . , Vi, . . .}, and measures ac-
cordingly, comprising both the binding and its single occurrence.

Note that the measure function itself always terminates and evalu-
ates to a positive integer. This is the case because for every recursive
call M(Γ′; τ

′) of M(Γ; τ), the combined syntactic size of the argu-
ments ∣τ′∣ + ∣Γ′∣ is strictly smaller than ∣τ∣ + ∣Γ∣. The same is true
for recursive calls M(Γ′; ψ

′) of M(Γ; ψ). The syntactic size is defined
in Figure 17.
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In the remainder of this chapter, the following facts about the dis-
tributivity contexts will be used implicitly (proofs are straightforward
by induction):

• δ[τ] = τ
′ for some τ

′;

• δ[δ′] = δ
′′ for some δ

′′;

• δ[δ′[τ]] = (δ[δ′])[τ];

• Γ ⊢ δ<: δ
′ and Γ ⊢ τ <: τ

′
⟹ Γ ⊢ δ[τ]<: δ

′[τ′];

• ∣δ[τ]∣ = ∣δ∣+ ∣τ∣;

• ∣ζ[ψ]∣ = ∣ζ∣+ ∣ψ∣;

• M(Γ; δ[τ]) = M(Γ; δ)+M(Γ; τ);

• M(Γ; ζ[ψ]) = M(Γ; ζ)+M(Γ; ψ);

• ρ(δ[τ]) = ρ(δ)[ρ(τ)].

This section presents the following key properties:

• termination of Γ ⊢ τ <: τ
′ (Lemma 1);

• termination of τ ⊓Γ τ
′ (Lemma 2);

• termination of Γ ∣ H ⊢ τ ⋖ τ
′
↝ K (Lemma 3);

• termination of Solve(Γ; ∆; K) (Lemma 4);

• termination of Γ ∣ ∆ ⊢ ψ<: ψ
′ (Theorem 1).

Lemma 1 (Termination of Γ ⊢ τ <: τ
′). The subtyping algorithm built

from the rules of subtyping of types Γ ⊢ τ <: τ
′ terminates.

Proof. It follows from the fact that, for each subtyping rule, the mea-
sure of each premise Γ ⊢ τp <: τ

′
p is strictly smaller than the measure

of the conclusion Γ ⊢ τ <: τ
′, i.e.

M(Γ; τp)+M(Γ; τ
′
p) < M(Γ; τ)+M(Γ; τ

′).

For example, in the case ST-VarLeft,

M(Γ; δ[u])+M(Γ; τ
′) < M(Γ; δ[V])+M(Γ; τ

′)

because

M(Γ; u) < M(Γ; V) = 1+M(Γ; l)+M(Γ; u).

Lemma 2 (Termination of intersection ⊓Γ). ∀Γ, τ, τ
′, τ⊓Γ τ

′ terminates.
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Proof. τ ⊓Γ τ
′ terminates because subtyping of types terminates, and,

for each recursive call τr ⊓Γ τ
′
r of τ ⊓Γ τ

′, the measure M(Γ; τr) +
M(Γ; τ

′
r) is strictly smaller than M(Γ; τ)+M(Γ; τ

′).

Lemma 3 (Termination of Γ ∣ H ⊢ τ ⋖ τ
′
↝ K). The subtyping algo-

rithm built from the rules of constrained subtyping of types Γ ∣ H ⊢

τ ⋖ τ
′
↝ K terminates.

Proof. Similarly to the previous theorem, the measure decreases, i.e.

M(Γ; τp)+M(Γ; τ
′
p) < M(Γ; τ)+M(Γ; τ

′)

for each premise Γ ∣ H ⊢ τp ⋖ τ
′
p ↝ K of the conclusion Γ ∣ H ⊢

τ ⋖ τ
′
↝ K.

The only interesting case is SC-UVar-UnionRight. By the vari-
able name convention (Definition 1), α ∉ Γ. Therefore, M(Γ; α) =

M(Γ; α1) = M(Γ; α2) and the measure of the left-hand side type is the
same in both premises and the conclusion, while the measure of the
right-hand side type in both premises is strictly smaller than in the

conclusion. Furthermore,⨅n
i=1 ui

1 and⨅m
j=1 u

j
2 terminate by Lemma 2.

Lemma 4 (Termination of Solve(Γ; ∆; K)). The constraint resolution al-
gorithm Solve(Γ; ∆; K) terminates.

Proof. It follows from the fact that:

1. the subtyping algorithms Γ ⊢ τ <: τ
′ and Γ ∣ H ⊢ τ ⋖ τ

′
↝ K

used to check the consistency of constraints terminate;

2. the argument ∆ of the only recursive call to Solve is strictly
smaller than that of the original call.

Lemma 5 (Context weakening in M). The measure of a type signature
does not change if the environment is extended (in any position) with a
variable that occurs neither in the signature nor in the environment, i.e.,
∀ψ, Γ, Γ′.∀l<:V<:u with ¬ occ(V; ψ) and ¬ occ(V; Γ) and ¬ occ(V; Γ′).

M(Γ++ Γ′; ψ) = M(Γ, l<:V<:u++ Γ′; ψ),

where Γ++ Γ′′ denotes the concatenation of lists, and occ is defined in Fig-
ure 18.

Proof. By strong induction on n = ∣Γ∣ + ∣Γ′∣ + ∣ψ∣. For details, see
Lemma 13 on page 87.

Theorem 1 (Termination of Γ ∣ ∆ ⊢ ψ<: ψ
′). The subtyping algorithm

built from the rules of subtyping of type signatures Γ ∣ ∆ ⊢ ψ<: ψ
′ termi-

nates.
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occ(V; τ)
occ(V;⊤) = false

occ(V;⊥) = false

occ(V; V) = true

occ(V; V′) = false

occ(V; τ1 × τ2) = occ(V; τ1)∨ occ(V; τ2)
occ(V; N{v1, . . . , vn}) = occ(V; v1)∨ . . .∨ occ(V; vn)
occ(V; τ1 ∪ τ2) = occ(V; τ1)∨ occ(V; τ2)

occ(V; v)
occ(V; l≪u) = occ(V; l)∨ occ(V; u)

occ(V; ψ)
occ(V;⊤) = false

. . .
occ(V;∃l<:V<:u.ψ) = true

occ(V;∃l<:V′<:u.ψ) = occ(V; l)∨ occ(V; u)∨ occ(V; ψ)

occ(V; Γ)
occ(V; ⋅) = false

occ(V; Γ, l<:V<:u) = true

occ(V; Γ, l<:V′<:u) = occ(V; Γ)∨ occ(V; l)∨ occ(V; u)

Figure 18: Occurrence of a variable

Proof. It follows from the fact that, for each subtyping rule, the mea-
sure of each premise Γ ∣ ∆ ⊢ ψp <: ψ

′
p is strictly smaller than the

measure of the conclusion Γ ∣ ∆ ⊢ ψ<: ψ
′, i.e.

M(Γ′; ψp)+M(Γ′++∆′; ψ
′
p) < M(Γ; ψ)+M(Γ++∆; ψ

′).

Most of the cases are similar to the cases of Lemma 1 on the termi-
nation of Γ ⊢ τ <: τ

′. The remaining cases are:

• SS-InvLeft. Since X is a fresh variable, by Lemma 5 (weak-
ening), M(Γ, l<:X<:u; ζ[N{. . .}]) = M(Γ; ζ[N{. . .}]), and also
M(Γ, l<:X<:u++∆; ψ

′) = M(Γ++∆; ψ
′).

By the definition of M,

M(Γ, l<:X<:u; X)
= 1+M(Γ; l)+M(Γ; u)
< 2× (1+M(Γ; l)+M(Γ; u))
= M(Γ; l≪u),

• SS-ExistLeft. By the variables name convention (Definition 1),
X is different from variables in Γ, ∆, as well as the bound vari-
ables of ζ, ψ, and ψ

′. Therefore, by Lemma 5 (weakening),
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M(Γ, l<:X<:u; ζ) = M(Γ; ζ), and similarly for ψ
′. By the defini-

tion of M,

M(Γ;∃l<:X<:u.ψ) = 1+M(Γ; l)+M(Γ; u)+M(Γ, l<:X<:u; ψ),

which is strictly larger than M(Γ, l<:X<:u; ψ) in the premise.

• SS-ExistRight. Similarly to SS-ExistLeft.

• SS-Types. The first premise, Γ ∣ dom(∆) ⊢ τ ⋖• τ
′
↝ K, termi-

nates by Lemma 3. Since the constraint resolution Solve(Γ; ∆; K)
terminates by Lemma 4, the entire step also terminates.

4.2.2 Unification-Free Subtyping

This section presents the following key properties:

• reflexivity Γ ⊢ τ <: τ (Theorem 2);

• transitivity Γ ⊢ τ1 <: τ2 and Γ ⊢ τ2 <: τ3 ⟹ Γ ⊢ τ1 <: τ3

(Theorem 3);

• soundness with respect to substitution (Theorem 4).

Theorem 2 (Reflexivity of subtyping of types). ∀τ, Γ, with Γ ⊢ τ.

Γ ⊢ τ <: τ.

Proof. By induction on the structure of τ.

• Case ⊤ by ST-Top.

• Case ⊥ by ST-Bot.

• Case V by ST-VarRefl.

• Case τ1 × τ2 by IH and ST-Tuple.

• Case N{v1, . . . , vn} by IH on li, ui, and ST-Inv.

• Case τ1 ∪ τ2 by IH, ST-UnionRight, and ST-UnionLeft.

Lemma 6 (Subtyping of ⊥ implies arbitrary subtyping).

∀τ, δ⊥, Γ. Γ ⊢ τ <: δ⊥[⊥] ⟹ (∀τ
′, δ

′. Γ ⊢ δ
′[τ]<: τ

′).

Proof. By induction on the derivation of Γ ⊢ τ <: δ⊥[⊥]. For details,
see Lemma 14 on page 88.
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Lemma 7 (Subtyping of inner union on the right). ∀τ, δ
′, τ

′
1, τ

′
2, Γ, with

⊢ Γ and Γ ⊢ τ, δ
′, τ

′
1, τ

′
2.

Γ ⊢ τ <: δ
′[τ′1 ∪ τ

′
2]

⟹

(∀δ1, δ2, with Γ ⊢ δ1, δ2 and Γ ⊢ δ1 <: δ2. Γ ⊢ δ1[τ]<: δ2[δ′[τ′1]]∪ δ2[δ′[τ′2]]).

Proof. By induction on the derivation of Γ ⊢ τ <: δ
′[τ′1 ∪ τ

′
2]. For

details, see Lemma 15 on page 89.

Lemma 8 (Adding inner union on the right). ∀τ, δ
′, τ

′, Γ, with ⊢ Γ and
Γ ⊢ τ, δ

′, τ
′.

Γ ⊢ τ <: δ
′[τ′] ⟹ (∀τ

′′. Γ ⊢ τ <: δ
′[τ′ ∪ τ

′′]).

Proof. By induction on the derivation of Γ ⊢ τ <: δ
′[τ′]. For details,

see Lemma 16 on page 89.

Lemma 9 (Subtyping of union on the right). ∀τ, δ
′, τ

′
1, τ

′
2, Γ, with

⊢ Γ and Γ ⊢ τ, δ
′, τ

′
1, τ

′
2.

Γ ⊢ τ <: δ
′[τ′1]∪ δ

′[τ′2] ⟹ Γ ⊢ τ <: δ
′[τ′1 ∪ τ

′
2].

Proof. By induction on the derivation of Γ ⊢ τ <: δ
′[τ′1] ∪ δ

′[τ′2].
Four cases are possible: ST-Bot, ST-VarLeft, ST-UnionLeft, and
ST-UnionRight. The first three are analogous to the cases of Lemma 7

(subtyping inner union on the right): the form of the rule, IH, con-
structor. The remaining case is ST-UnionRight, subcase i = 1. By
the form of the rule, Γ ⊢ τ <: δ

′[τ′1]. Thus, the case concludes by
Lemma 8 (adding inner union on the right): Γ ⊢ τ <: δ

′[τ′1 ∪ τ
′
2].

Lemma 10 (Context weakening in subtyping of types). ∀Γ, τ, τ
′.∀Γ′

with dom(Γ′)∩dom(Γ) = ∅ and (∀V ∈ dom(Γ′).¬ occ(V; τ) and ¬ occ(V; τ
′)),

Γ ⊢ τ <: τ
′

⟹ Γ++ Γ′ ⊢ τ <: τ
′.

Proof. Straightforward induction on the derivation of Γ ⊢ τ <: τ
′.

Lemma 11 (Subtyping of upper bound). ∀Γ, τ, δ, V, with l<:V<:u ∈ Γ,
⊢ Γ, Γ ⊢ τ, and Γ ⊢ δ[V], if

1. ∀τ0 with Γ ⊢ τ0 and M(Γ; τ0) ≤ M(Γ; τ),
Γ ⊢ τ0 <: l ⟹ Γ ⊢ τ0 <: u

2. Γ ⊢ τ <: δ[V]

then Γ ⊢ τ <: δ[u].
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Proof. Suppose Γ ⊢ τinner, τ
′
inner and Γ ⊢ τinner <: τ

′
inner. We show by

induction on this derivation that, for all δinner, if

1. M(Γ; τinner) ≤ M(Γ; τ) and

2. τ
′
inner = δinner[V],

then Γ ⊢ τinner <: δinner[u]. The most interesting case of the proof is
highlighted in bold.

• Case ST-Bot. By ST-Bot.

• Case ST-VarRefl. Γ ⊢ V<: V. By Theorem 2 (reflexivity),
Γ ⊢ u<: u. Thus, by ST-VarLeft, Γ ⊢ V<: u.

• Case ST-VarLeft. Γ ⊢ δ
′[V′]<: δinner[V]. By the form of

the rule, l′<:V′
<:u′ ∈ Γ and Γ ⊢ δ

′[u′]<: δinner[V]. Since
M(Γ; δ

′[u′]) < M(Γ; δ
′[V′]), by transitivity of ≤ on natural num-

bers, we have M(Γ; δ
′[u′]) ≤ M(Γ; τ). Therefore, the IH is appli-

cable, providing Γ ⊢ δ
′[u′]<: δinner[u]. Thus, by ST-VarLeft,

Γ ⊢ δ
′[V′]<: δinner[u].

• Case ST-VarRight. Γ ⊢ τinner <: V. By the form of the
rule, l<:V<:u ∈ Γ and Γ ⊢ τinner <: l. Since by assumption,
M(Γ; τinner) ≤ M(Γ; τ), the first assumption of the lemma is
applicable, providing Γ ⊢ τinner <: u.

• Case ST-Tuple, subcase δinner = δ
′ × τ22, i.e. τinner = τ11 × τ12

and Γ ⊢ τ11 × τ12 <: δ
′[V]× τ22 (δinner = □ is not possible, and

δinner = τ21 × δ
′ is proved analogously). By the form of the

rule, Γ ⊢ τ11 <: δ
′[V] and Γ ⊢ τ12 <: τ22. Since M(Γ; τ11) <

M(Γ; τinner), by transitivity of ≤ on natural numbers, we have
M(Γ; τ11) ≤ M(Γ; τ). Thus, by IH, Γ ⊢ τ11 <: δ

′[u]. Then, by
ST-Tuple, Γ ⊢ τ11 × τ12 <: δ

′[u]× τ22.

• Case ST-UnionLeft is proved analogously to ST-Tuple: by the
form of the rule, IH, and ST-UnionLeft.

The remaining cases (ST-Top, ST-Tuple, ST-Inv, ST-UnionRight) are
not possible. The conclusion of the lemma follows by instantiating
τinner and δinner with τ and δ.

Theorem 3 (Transitivity of subtyping of types). ∀τ1, τ2, τ3, Γ,
with ⊢ Γ and Γ ⊢ τ1, τ2, τ3.

Γ ⊢ τ1 <: τ2 and Γ ⊢ τ2 <: τ3 ⟹ Γ ⊢ τ1 <: τ3.

Proof. By strong induction on n = M(Γ; τ1)+ 2×M(Γ; τ2)+M(Γ; τ3).
The summand 2×M(Γ; τ2) accounts for the fact that τ2 occurs twice,
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in the derivation of Γ ⊢ τ1 <: τ2 and Γ ⊢ τ2 <: τ3; this fact is needed
in the case ST-VarLeft of Γ ⊢ τ2 <: τ3.

Cases n = 1..3 are not possible as the minimal measure of a type
is 1. In the inductive step for n, the induction hypothesis (IH) states
that ∀n′ < n. ∀τ

′
1, τ

′
2, τ

′
3 with n′ = M(Γ; τ

′
1)+ 2×M(Γ; τ

′
2)+M(Γ; τ

′
3),

it holds that

Γ ⊢ τ
′
1 <: τ

′
2 and Γ ⊢ τ

′
2 <: τ

′
3 ⟹ Γ ⊢ τ

′
1 <: τ

′
3.

Proceed by case analysis on Γ ⊢ τ2 <: τ3 (the most interesting cases
are highlighted in bold).

• Case ST-Top Γ ⊢ τ2 <:⊤ where τ3 = ⊤ concludes by ST-Top:
Γ ⊢ τ1 <:⊤.

• Case SS-Bot Γ ⊢ δ[⊥]<: τ3 where τ2 = δ[⊥]. The case con-
cludes by Lemma 6 (subtyping of ⊥) applied to the assumption
Γ ⊢ τ1 <: δ[⊥] with δ

′
= □, τ

′
= τ3: Γ ⊢ τ1 <: τ3.

• Case ST-VarRefl Γ ⊢ V<: V. Since τ2 = τ3 = V, the case
concludes by the assumption Γ ⊢ τ1 <: V.

• Case ST-VarLeft Γ ⊢ δ[V]<: τ3 where τ2 = δ[V]. By the form
of the rule, l<:V<:u ∈ Γ and Γ ⊢ δ[u]<: τ3. By assumption,
Γ ⊢ τ1 <: δ[V].
First, we will use Lemma 11 (subtyping of upper bound) to
derive Γ ⊢ τ1 <: δ[u]. To use the lemma, we need to show that
∀τ

′ with M(Γ; τ
′) ≤ M(Γ; τ1). Γ ⊢ τ

′
<: l ⟹ Γ ⊢ τ

′
<: u.

Since τ2 contains V, M(Γ; V) ≤ M(Γ; τ2), and M(Γ; V) = 1 +
M(Γ; l)+M(Γ; u), we have M(Γ; τ1)+ 2×M(Γ; l)+M(Γ; u) <
M(Γ; τ1)+ 2×M(Γ; τ2)+M(Γ; τ3). Thus, the IH is applicable to
Γ ⊢ τ

′
<: l and Γ ⊢ l <: u for any τ

′ with M(Γ; τ
′) ≤ M(Γ; τ1).

Finally, since τ2 = δ[V] and M(Γ; u) < M(Γ; V), the IH is appli-
cable to Γ ⊢ τ1 <: δ[u] and Γ ⊢ δ[u]<: τ3, which concludes
the case with Γ ⊢ τ1 <: τ3.

• Case ST-VarRight Γ ⊢ τ2 <: V. By the form of the rule,
l<:V<:u ∈ Γ and Γ ⊢ τ2 <: l. Since M(Γ; l) < M(Γ; V), by
IH, Γ ⊢ τ1 <: l. Thus, by ST-VarRight, Γ ⊢ τ1 <: V.

• Case ST-Tuple Γ ⊢ τ21 × τ22 <: τ31 × τ32 where τi = τi1 × τi2.
Case analysis on Γ ⊢ τ1 <: τ21 × τ22.

– Case ST-Bot by ST-Bot.

– Case ST-VarLeft by the form of the rule, IH on Γ ⊢

δ[u]<: τ2 and Γ ⊢ τ2 <: τ3, and ST-VarLeft on Γ ⊢

δ[u]<: τ3.
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– Case ST-Tuple by the form of the rule, IH on Γ ⊢ τ1j <: τ2j

and Γ ⊢ τ2j <: τ3j, and ST-Tuple.

– Case ST-UnionLeft Γ ⊢ δ[τ11 ∪ τ12]<: τ2 by the form of
the rule, IH on Γ ⊢ δ[τ1j]<: τ2 and Γ ⊢ τ2 <: τ3, and
ST-UnionLeft.

The remaining cases (ST-Top, ST-VarRefl, ST-VarRight, ST-Inv,
ST-UnionRight) are not possible.

• Case ST-Inv is proved similarly to ST-Tuple, with possible cases
of Γ ⊢ τ1 <: τ2 being ST-Bot, ST-VarLeft, ST-Inv, and ST-
UnionLeft.

• Case ST-UnionLeft Γ ⊢ δ[τ21 ∪ τ22]<: τ3. By Lemma 7 applied
to Γ ⊢ τ1 <: δ[τ21 ∪ τ22] with δ1 = □, δ2 = □, Γ ⊢ τ1 <: δ[τ21]∪
δ[τ22]. Case analysis on the latter.

– Case ST-Bot by ST-Bot.

– Case ST-VarLeft where τ1 = δ
′[V]. By the form of the rule,

l<:V<:u ∈ Γ and Γ ⊢ δ
′[u]<: δ[τ21]∪ δ[τ22]. By Lemma 9

applied to the latter, Γ ⊢ δ
′[u]<: δ[τ21 ∪ τ22].

Since M(Γ; u) < M(Γ; V), by IH, Γ ⊢ δ
′[u]<: τ3. Thus,

the case concludes by ST-VarLeft: Γ ⊢ δ
′[V]<: τ3.

– Case ST-UnionLeft similarly to ST-VarLeft.

– Case ST-UnionRight, subcase i = 1. By the form of the rule,
Γ ⊢ τ1 <: δ[τ21]. By the form of the rule of the outer case
assumption Γ ⊢ δ[τ21 ∪ τ22]<: τ3, Γ ⊢ δ[τ21]<: τ3. Since
M(Γ; δ[τ21]) < M(Γ; δ[τ21 ∪ τ22]), by IH, Γ ⊢ τ1 <: τ3.

The remaining cases (ST-Top, ST-VarRefl, ST-VarRight, ST-
Tuple, ST-Inv) are not possible.

• Case ST-UnionRight Γ ⊢ τ2 <: τ31 ∪ τ32 where τ3 = τ31 ∪ τ32,
subcase i = 1. By the form of the rule, Γ ⊢ τ2 <: τ31. Since
M(Γ; τ31) < M(Γ; τ31 ∪ τ32), by IH, Γ ⊢ τ1 <: τ31. Thus, the
case concludes by ST-UnionRight.

Theorem 4 (Soundness of subtyping of types with respect to subsitution).
∀Γ, τ, τ

′ with ⊢ Γ and Γ ⊢ τ, τ
′. ∀Γ′, ρ with ⊢ Γ′ and Γ ⊨Γ′ ρ.

Γ ⊢ τ <: τ
′

⟹ Γ′ ⊢ ρ(τ)<: ρ(τ
′).

where Γ ⊨Γ′ ρ is defined in Figure 19.

Proof. By induction on the derivation of Γ ⊢ τ <: τ
′.

Cases ST-Top and ST-Bot are straightforward by ST-Top and ST-Bot,
respectively.
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Γ ⊨Γ′ ρ

∀l<:V<:u ∈ Γ. Γ′ ⊢ ρ(V) Γ′ ⊢ ρ(l)<: ρ(V) Γ′ ⊢ ρ(V)<: ρ(u)
Γ ⊨Γ′ ρ

K ⊨Γ ρ

∀τ ≤ α ∈ K. Γ ⊢ τ <: ρ(α) ∀α ≤ τ
′
∈ K. Γ ⊢ ρ(α)<: τ

′

K ⊨Γ ρ

Figure 19: Validity of substitution with respect to environment and con-
straints

Case ST-VarRefl by Theorem 2 (reflexivity): Γ′ ⊢ ρ(V)<: ρ(V).
Cases ST-Tuple, ST-Inv, ST-UnionLeft, and ST-UnionRight are

straightforward using the form of the rule, the induction hypothesis,
and constructor. For example, consider the case ST-Tuple Γ ⊢ τ1 ×

τ2 <: τ
′
1 × τ

′
2. By the form of the rule, Γ ⊢ τi <: τ

′
i . By IH, Γ′ ⊢

ρ(τi)<: ρ(τ
′
i). The case concludes by ST-Tuple with

Γ′ ⊢ ρ(τ1)× ρ(τ2)<: ρ(τ
′
1)× ρ(τ

′
2)

and the fact that ρ(τ1 × τ2) = ρ(τ1)× ρ(τ2).
The remaining cases ST-VarLeft and ST-VarRight are similar. For

example, consider ST-VarLeft Γ ⊢ δ[V]<: τ
′. By the form of the

rule, l<:V<:u ∈ Γ and Γ ⊢ δ[u]<: τ
′. By IH, Γ′ ⊢ ρ(δ[u])<: ρ(τ

′).
By the form of the rule of the assumption Γ ⊨Γ′ ρ, we know Γ′ ⊢

ρ(V)<: ρ(u). Since ρ(δ[u]) = ρ(δ)[ρ(u)] and Γ′ ⊢ ρ(δ)<: ρ(δ) by re-
flexivity, we have Γ′ ⊢ ρ(δ)[ρ(V)]<: ρ(δ)[ρ(u)]. The case concludes
by Theorem 3 (transitivity) with the middle type ρ(δ[u]):

Γ′ ⊢ ρ(δ[V])<: ρ(τ
′).

4.2.3 Intersection

Theorem 5 (Soundness of intersection). τ ⊓Γ τ
′ defines an intersection

of τ, τ
′, namely: ∀Γ, τ, τ

′ s.t. ⊢ Γ and Γ ⊢ τ, τ
′. τ ⊓Γ τ

′ is a valid lower
bound of τ and τ

′, i.e.,

Γ ⊢ τ ⊓Γ τ
′ and Γ ⊢ (τ ⊓Γ τ

′)<: τ and Γ ⊢ (τ ⊓Γ τ
′)<: τ

′.

Proof. Straightforward by strong induction on M(Γ; τ)+M(Γ; τ
′).

For example, the case where Γ ⊢ τ <: τ
′ follows from the assump-

tions and reflexivity Γ ⊢ τ <: τ.
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In the case (τ1 ∪ τ2)⊓Γ τ
′, we know by IH that τ1 ⊓Γ τ

′ and τ2 ⊓Γ τ
′

are valid lower bounds of τ1, τ
′ and τ2, τ

′, respectively. Thus, the case
concludes by ST-UnionLeft.

In the case V⊓Γ τ
′, we have Γ ⊢ l <: V by Theorem 2 (reflexivity)

and ST-VarRight. Then, by IH, Γ ⊢ l ⊓Γ τ
′
<: l. The case concludes

by Theorem 3 (transitivity): Γ ⊢ l ⊓Γ τ
′
<: V.

The remaining cases for tuples and invariant constructors use the
induction hypotheses and constructors ST-Tuple and ST-Inv, respec-
tively, as well as ST-UnionLeft in the invariant case.

The catch-all case τ ⊓Γ τ
′
= ⊥ follows from ST-Bot.

4.2.4 Constrained Subtyping

This section presents the following key properties:

• Γ ⊢ τ <: τ
′ and Γ ∣ H ⊢ τ ⋖ τ

′
↝ K coincide on unification-

free types (Lemma 12);

• soundness of Γ ∣ H ⊢ τ ⋖ τ
′
↝ K (Theorem 6);

• soundness of Solve(Γ; ∆; K) (Theorem 7).

Lemma 12. Constrained subtyping coincides with subtyping on unification-
free types. ∀Γ, τ, τ

′ with ⊢ Γ and Γ ⊢ τ and Γ ⊢ τ
′ the following

holds:

1. ∀H. Γ ∣ H ⊢ τ ⋖ τ
′
↝ K ⟹ K = ∅ and Γ ⊢ τ <: τ

′;

2. Γ ⊢ τ <: τ
′

⟹ ∀H. Γ ∣ H ⊢ τ ⋖ τ
′
↝ ∅.

Proof. Straightforward by induction on the derivation of:

1. Γ ∣ H ⊢ τ ⋖ τ
′
↝ K (more precisely, by mutual induction on

Γ ∣ H ⊢ τ •⋖ τ
′
↝ K and Γ ∣ H ⊢ τ ⋖• τ

′
↝ K);

2. Γ ⊢ τ <: τ
′.

In the first case, the rules SC-UBot, SC-UVarLeft, SC-UVarRight,
and SC-UVar-UnionRight could not have been used to build the
derivation because they refer to a unification variable α from H, and
both τ and τ

′ are valid in Γ alone. All other rules of constrained
subtyping have matching subtyping rules.

In the second case, all subtyping rules have matching rules of
constrained subtyping. The assumption ⊢ Γ and Lemma 10 (context
weakening) allow for concluding Γ ⊢ δ[u] and Γ ⊢ l to apply
the induction hypothesis in the rules SC-VarLeft/ST-VarLeft and
SC-VarRight/ST-VarRight.
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Theorem 6 (Soundness of constrained subtyping). ∀Γ, H, τ, τ
′ with ⊢

Γ, if
Γ ∣ H ⊢ τ ⋖• τ

′
↝ K and Γ ⊢ τ and Γ ∣ H ⊢ τ

′

or
Γ ∣ H ⊢ τ •⋖ τ

′
↝ K and Γ ∣ H ⊢ τ and Γ ⊢ τ

′,

then ∀ρ with dom(ρ) ⊇ H and dom(ρ)∩ dom(Γ) = ∅ and K ⊨Γ ρ.

Γ ⊢ ρ(τ)<: ρ(τ
′).

Proof. By strong induction on M(Γ; τ)+M(Γ; τ
′).

• Case SC-Top Γ ∣ H ⊢ τ ⋖⊤ ↝ ∅. By definition, ρ(⊤) = ⊤.
Thus, the case concludes by ST-Top: Γ ⊢ ρ(τ)<:⊤.

• Case SC-Bot by ST-Bot, similarly to SC-Top.

• Case SC-UBot Γ ∣ H ⊢ δ[α]•⋖ τ
′
↝ {α ≤ ⊥}. Since ρ(δ[α]) =

ρ(δ)[ρ(α)] = δ
′[ρ(α)] for some δ

′ and by assumption, Γ ⊢

ρ(α)<:⊥, we have Γ ⊢ δ
′[ρ(α)]<: δ

′[⊥]. By ST-Bot, Γ ⊢

δ
′[⊥]<: ρ(τ

′). Therefore, the case concludes by transitivity: Γ ⊢

δ
′[ρ(α)]<: ρ(τ

′).

• Case SC-VarRefl by ST-VarRefl, for ρ(X) = X.

• Case SC-UVarLeft Γ ∣ H ⊢ α •⋖ τ
′
↝ {α ≤ τ

′} by assumption
Γ ⊢ ρ(α)<: τ

′, since ρ(τ
′) = τ

′ due to Γ ⊢ τ
′.

• Case SC-UVarRight similarly to SC-UVarLeft.

• Case SC-VarLeft (SC-VarRight) by the form of the rule, IH, and
ST-VarLeft (ST-VarRight), for ρ(X) = X and ρ(u) = u (ρ(l) = l).

• Cases SC-Tuple, SC-Inv, SC-UnionLeft, and SC-UnionRight

are all similar: by the form of the rule, IH, and the corresponding
subtyping constructor.

• Case SC-UVar-UnionRight Γ ∣ H ⊢ δ[α]•⋖ τ
′
1 ∪ τ

′
2 ↝ K′

1 ∪

K′
2 ∪K′. Since Γ ⊢ τ

′
1 ∪ τ

′
2, we have ρ(τ

′
1 ∪ τ

′
2) = τ

′
1 ∪ τ

′
2. By as-

sumption, K′
1∪K′

2∪K′
⊨Γ ρ. By the form of the rule, Γ ∣ H, α1 ⊢

δ[α1]•⋖ τ
′
1 ↝ K1 and Γ ∣ H, α2 ⊢ δ[α2]•⋖ τ

′
2 ↝ K2, where

K1 = K′
1⋃n

i=1{α1 ≤ ui
1} and K2 = K′

2⋃m
j=1{α2 ≤ u

j
2}.

Let ⨅n
i=1 ui

1 be denoted with u1 and ⨅m
j=1 u

j
2 with u2. By Theo-

rem 5 (soundness of intersection), we have Γ ⊢ u1 <: ui
1 and

Γ ⊢ u2 <: u
j
2 for all i, j. Therefore, we can take ρ1 = ρ[α1 ↦u1]

and ρ2 = ρ[α2 ↦u2], and it holds that K1 ⊨Γ ρ1 and K2 ⊨Γ ρ2.
Therefore, the induction hypotheses are applicable, and we get
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Γ ⊢ ρ1(δ)[u1]<: τ
′
1 (H1) and Γ ⊢ ρ2(δ)[u2]<: τ

′
2 (H2). By

assumption on ρ, we have Γ ⊢ ρ(α)<: u1 ∪ u2. Therefore,

Γ ⊢ ρ(δ)[ρ(α)]<: ρ(δ)[u1 ∪ u2].

Since α1, α2 were fresh, we know ρ(δ) = ρ1(δ) = ρ2(δ). Therefore,
by ST-UnionLeft applied to H1, H2, we have

Γ ⊢ ρ(δ)[u1 ∪ u2]<: τ
′
1 ∪ τ

′
2.

Finally, the subcase n ≥ 1, m ≥ 1 concludes by transitivity:

Γ ⊢ ρ(δ)[ρ(α)]<: τ
′
1 ∪ τ

′
2.

Theorem 7 (Soundness of constraints resolution). ∀Γ, ∆ s.t. ⊢ Γ, ∆.
∀K s.t. ∀l ≤ α ∈ K. Γ ⊢ l and ∆ ⊢ α and ∀α ≤ u ∈ K. ∆ ⊢

α and Γ ⊢ u.

Solve(Γ; ∆; K) = ρ ⟹ ∆ ⊨Γ ρ and K ⊨Γ ρ.

where ∆ ⊨Γ ρ and K ⊨Γ ρ are defined in Figure 19.

Proof. By induction on ∆. The base case is trivial (K = ∅ because
∆ = ⋅).

In the inductive step ∆, l<:α<:u, the induction hypothesis applies to
the call Solve(Γ; ∆; K′⋃i Kli ⋃j Kuj), which returns ρ. Therefore, we

know that ∆ ⊨Γ ρ and K′⋃i Kli ⋃j Kuj ⊨Γ ρ.
Let ρ(l)⋃i li be denoted with τα and ρ [α ↦ τα ] with ρα. By The-

orem 6 (soundness of constrained subtyping) applied to Γ ∣ H ⊢

li ⋖• u ↝ Kli with Kli ⊨Γ ρ and Γ ∣ H ⊢ l •⋖ uj ↝ Kuj with
Kuj ⊨Γ ρ, we know

Γ ⊢ li <: ρ(u) (Hli) and Γ ⊢ ρ(l)<: uj (Huj).

By ST-UnionRight and reflexivity, we know Γ ⊢ ρ(l)<: τα. By
Theorem 4 (soundness of subtyping with respect to substitution),
Γ ⊢ ρ(l)<: ρ(u) (H), for ∆ ⊢ l <: u by the ∆ validity assumption.
Thus, we have Γ ⊢ τα <: ρ(u) by ST-UnionLeft, H, and Hli . Since
∆ ⊨Γ ρ and α does not occur in ∆, it holds that ∆ ⊨Γ ρα, and we get

∆, l<:α<:u ⊨Γ ρα.

Finally, we know that ∀i, j, Γ ⊢ li <: τα holds by ST-UnionRight

and reflexivity, and Γ ⊢ τα <: uj holds by ST-UnionLeft, Huj , and
Γ ⊢ li <: uj, which means Kα ⊨Γ ρα. Since α does not occur in K′, we
also know K′

⊨Γ ρα. Thus, K ⊨Γ ρα, which concludes the proof.
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� �
abstract type Real <: Number
end

struct Rational{
T<:Integer

} <: Real
num::T
den::T

end� �

� �
abstract type Ref{T} <: Any
end

struct RefArray{
T, A<:AbstractArray{T}, R

} <: Ref{T}
x::A
...

end� �
Figure 20: Examples of inheritance in type declarations

4.3 extended subtyping

In this section, I discuss two Julia features that were omitted from the
core language in Figure 8: nominal subtyping (Section 4.3.1) and the
diagonal rule (Section 4.3.2).

4.3.1 Nominal subtyping

The Julia language supports a limited form of single-parent inheri-
tance: abstract nominal types can be inherited by both abstract and
concrete types, but concrete types are final and cannot be inherited.
Type parameters of parametric nominal types are invariant; they can
be constrained by non-recursive lower and upper bounds, and can be
referenced from the supertype declaration. For instance, Point{X<:Real}
can be declared a subtype of AbstractPoint{X}. Figure 20 provides a few
more examples. A type that is being inherited needs to be defined
before the inheriting type, and mututally recursive type declarations
are not supported.

Because of its fairly restricted nature, inheritance in Julia does not
interfere with the decidability of subtyping, unlike, for example, in
Java [Tate et al. 2011]. In particular, the lack of variance annotations,
recursive inheritance, and recursive constraints prevents properties
such as expansive inheritance [Kennedy and Pierce 2007], which are
known to cause undecidability. Thus, in Julia, subtyping of nominal
types is straightforward: the subtyping algorithm simply walks the
finite inheritance hierarchy, substituting type arguments of parametric
types. In the specification of Julia subtyping [Zappa Nardelli et al.
2018], this step is encoded with one extra rule App_Super, which
is given in Figure 21. In the context of the decidability proof from
Section 4.2.1, the measure of nominal types needs to be modified to
include the measure of the declared supertype, akin to how Greenman
et al. [2014] proved decidability of subtyping for Java with Material-
Shape Separation.
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Without changes, the framework of restricted existential types pre-
sented in Section 4.1 is suitable for partial handling of inheritance in
Julia. For example, consider the following derivation, where Vector{X}
is a declared subtype of AbsractVector{X}:

Vector{X} inherits AbsractVector{X}
Γ ⊢ ⊥<:⊥ Γ ⊢ Int<:⊤

Γ ⊢ AbsractVector{⊥≪Int}<:AbsractVector{⊥≪⊤}
Γ ⊢ Vector{⊥≪Int}<:AbsractVector{⊥≪⊤}

Similarly to App_Inv, subtyping is checked by substituting X with
⊥≪Int in the supertype declaration AbsractVector{X}. However, type
parameters do not have to be immediate arguments of the supertype
declaration. For example, the following type declaration is allowed:

� �
struct ZooVec{X} <: AbstractVector{Zoo{X}}

...

end� �
In this case, simply substituting X with a restricted existential variable
would be incorrect:

ZooVec{X} inherits AbsractVector{Zoo{X}} Γ ⊢ AbsractVector{Zoo{⊥≪Int}} ???

Γ ⊢ ZooVec{⊥≪Int} ≮∶ AbsractVector{Zoo{⊥≪⊤}}

Recall that ZooVec{⊥≪Int} denotes an existential type, namely:

∃⊥<:Y<:Int.ZooVec{Y}.

Therefore, the proper supertype of this type is

∃⊥<:Y<:Int.AbsractVector{Zoo{Y}},

which is different from

AbsractVector{∃⊥<:Y<:Int.Zoo{Y}}

denoted by AbsractVector{Zoo{⊥≪Int}}.
The simplest solution to this problem would be to disallow instanti-

ating type variables such as X in ZooVec (that is, variables that occur
in the supertype but not as immediate arguments) with restricted
existentials. Thus, ZooVec{Int} and ∃⊥<:X<:Int.ZooVec{X} would be
allowed, whereas ZooVec{⊥≪Int} would not.

A more general solution would be to open all restricted existential
types before walking up the inheritance hierarchy, similar to [Tate
2013]. Thus, the example above would proceed as follows:
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E ⊢ t <∶ t ⊢ E

App_Inv

E0 = add(E, Barrier) ∀ 0 < i ≤ n. Ei−1 ⊢ ti <∶ t′i ⊢ E′i ∧ E′i ⊢ t′i <∶ ti ⊢ Ei

E ⊢ name{t1, . . . , tn} <∶ name{t′1, . . . , t′n} ⊢ del(Barrier, En)

App_Super

name{T1, . . . , Tn} <∶ t′′ ∈ tds E ⊢ t′′[t1/T1, . . . , tn/Tn] <∶ t′ ⊢ E′

E ⊢ name{t1, . . . , tn} <∶ t′ ⊢ E′

Figure 21: Julia subtyping: nominal types

An excerpt from [Zappa Nardelli et al. 2018], extends Figure 6.

ZooVec{X} inherits AbsractVector{Zoo{X}}
Γ,⊥<:Y<:Int ⊢ AbsractVector{Zoo{Y}} ≮∶ AbsractVector{Zoo{⊥≪⊤}}
Y fresh Γ,⊥<:Y<:Int ⊢ ZooVec{Y} ≮∶ AbsractVector{Zoo{⊥≪⊤}}

Γ ⊢ ZooVec{⊥≪Int} ≮∶ AbsractVector{Zoo{⊥≪⊤}}

Additional subtyping rules that support this approach to handling
inheritance are given in Figure 22. The rules ST-InvSuper and SC-
InvSuper are similar to App_Super: they walk the inheritance hier-
archy, substituting type arguments; importantly, these rules can be
applied only when all the arguments of the left-hand side invariant
constructor are tight, i.e., τi rather than vi. The rule ST-InvLeft of
unification-free subtyping is similar to SS-InvLeft: it simply opens a
restricted existential type variable. The remaining rules of constrained
subtyping are more interesting:

• SC-InvLeft-UL handles the case when unification variables are
on the left. Although the bounds l and u may contain unification
variables, the fresh variable X is treated as universal and added to
Γ. Since X does not occur in the right-hand side type, unification
variables from its bounds cannot “leak” to the right.

• SC-InvLeft-UR handles the case when unification variables are
on the right. The fresh variable X can occur in generated con-
straints, so it needs to be discharged before the constraints are
propagated. The discharge algorithm is given in Figure 23.
Intuitively, since X is introduced after unification variables, con-
straints need to be satisfied for all possible valid instantiations
of X. To reflect this, covariant occurrences of X in lower-bound
(upper-bound) constraints are replaced with the upper bound
(lower bound) of X. If X occurs invariantly, it has to be tightly
bound (Γ ⊢ u<: l), or else discharge and subtyping fail.
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Γ ⊢ τ <: τ

ST-InvLeft

X fresh Γ, l<:X<:u ⊢ N{. . . , X, . . .}<: N′{v′1, . . . , v′m}
Γ ⊢ N{. . . , l≪u, . . .}<: N′{v′1, . . . , v′m}

ST-InvSuper

N{Y1, . . . , Yn} inherits τ
′′ Γ ⊢ τ

′′[Y1↦τ1, . . . , Y1↦τn]<: N′{v′1, . . . , v′m}
Γ ⊢ N{τ1, . . . , τn}<: N′{v′1, . . . , v′m}

Γ ∣ H ⊢ τ ⋖ τ ↝ K

SC-InvLeft-UL
X fresh Γ, l<:X<:u ∣ H ⊢ N{. . . , X, . . .}•⋖ N′{v′1, . . . , v′m} ↝ K

Γ ∣ H ⊢ N{. . . , l≪u, . . .}•⋖ N′{v′1, . . . , v′m} ↝ K

SC-InvLeft-UR
X fresh Γ, l<:X<:u ∣ H ⊢ N{. . . , X, . . .}⋖•N′{v′1, . . . , v′m} ↝ K K′ = Discharge(Γ; l<:X<:u; K)

Γ ∣ H ⊢ N{. . . , l≪u, . . .}⋖•N′{v′1, . . . , v′m} ↝ K′

SC-InvSuper

N{Y1, . . . , Yn} inherits τ
′′ Γ ∣ H ⊢ N′′{τ

′′
1 [Y1↦τ1, . . .], . . .}⋖ N′{v′1, . . . , v′m} ↝ K

Γ ∣ H ⊢ N{τ1, . . . , τn}⋖ N′{v′1, . . . , v′m} ↝ K

Figure 22: Additional subtyping rules to support inheritance

This figure extends unification-free subtyping (Figure 10) and con-
strained subtyping (Figure 11). Signature subtyping (Figure 13) remains
unchanged. Discharge is defined in Figure 23.

Discharge (Γ; l<:X<:u; K)
if Γ ⊢ u<: l then

return K[X↦ l]
else

Ku ← {cov↦(X; u; l′) ≤ α ∣ l′ ≤ α ∈ K} ;
Kl ← {α ≤ cov↦(X; l; u′) ∣ α ≤ u′ ∈ K} ;
return Ku ∪Kl

end

cov↦(V; τV; τ)
cov↦(V; τV;⊤) = ⊤

cov↦(V; τV;⊥) = ⊥

cov↦(V; τV; V) = τV
cov↦(V; τV; V′) = V′

cov↦(V; τV; τ1 × τ2) = cov↦(V; τV; τ1)× cov↦(V; τV; τ2)
cov↦(V; τV; N{. . .}) = if occ(V; N{. . .}) then fail else N{. . .}
cov↦(V; τV; τ1 ∪ τ2) = cov↦(V; τV; τ1)∪ cov↦(V; τV; τ2)

Figure 23: Variable discharge algorithm Discharge(Γ; l<:X<:u; K)



4.3 extended subtyping 62

The following example illustrates SC-InvLeft-UL:

Γ, α<:X<:Int ∣ α ⊢ Int⋖• α ↝ {Int ≤ α}
Γ, α<:X<:Int ∣ α ⊢ Int⋖•X ↝ {Int ≤ α}

Γ, α<:X<:Int ∣ α ⊢ X•⋖⊤ ↝ ∅

Γ, α<:X<:Int ∣ α ⊢ Ref{X}•⋖Ref{Int≪⊤} ↝ {Int ≤ α}
Γ ∣ α ⊢ Ref{α≪Int}•⋖Ref{Int≪⊤} ↝ {Int ≤ α}

The following example illustrates SC-InvLeft-UR where the variable
discharge succeeds:

Γ, Int<:X<:⊤ ∣ α ⊢ ⊥•⋖X ↝ ∅ Γ, Int<:X<:⊤ ∣ α ⊢ X⋖• α ↝ {X ≤ α}
Γ, Int<:X<:⊤ ∣ α ⊢ Ref{X}⋖•Ref{⊥≪α} ↝ {X ≤ α}

Discharge(Γ; Int<:X<:⊤; {X ≤ α}) = {⊤ ≤ α}
Γ ∣ α ⊢ Ref{Int≪⊤}⋖•Ref{⊥≪α} ↝ {⊤ ≤ α}

The following example illustrates SC-InvLeft-UR where the variable
discharge fails:

Γ, Int<:X<:⊤ ∣ α ⊢ AbsractVector{Zoo{X}}⋖•AbsractVector{α} ↝ {Zoo{X} ≤ α, α ≤ Zoo{X}}
Γ, Int<:X<:⊤ ∣ α ⊢ ZooVec{X}⋖•AbsractVector{α} ↝ {Zoo{X} ≤ α, α ≤ Zoo{X}}

Discharge(Γ; Int<:X<:⊤; {Zoo{X} ≤ α, α ≤ Zoo{X}}) = fail

Γ ∣ α ⊢ ZooVec{Int≪⊤} ⋖̸•AbsractVector{α}

The syntax of type declarations and extended validity rules are
given in Figure 24. Note that the supertype cannot be a restricted
existential type: A{τ1, . . . , τm} is an invariant constructor with tight
type arguments. The validity of types is checked with respect to an
implicit datatype table. In a type declaration, type parameters Xi may
reference previous parameters: this is handled by checking the validity
of type parameters in T ⊢ td using ⊢ Γ from Figure 15. Similarly to
declared bounds of existential variables, bounds of type parameters
need to be consistent.

4.3.2 Diagonal Rule

As discussed in Section 3.1, Julia provides special support for a
generic programming pattern where method arguments are expected
to be of the same concrete type. For example, in the existential type
Tuple{T,T} where T, type variable T can be instantiated only with con-
crete types. This is called the diagonal rule.

In this work, the diagonal rule is modeled explicitly, using a new
kind of type variables—concrete variables. In type signatures, exis-
tential types specify the kind of the bound variable explicitly:

ψ ∶∶= . . . ∣ ∃l<:V∶κ<:u.ψ
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N ∶∶= Invariant constructor name
∣ C concrete
∣ A abstract

T ∶∶= ∅ ∣ T , td Datatype table
td ∶∶= N{l1<:X1<:u1, . . . , ln<:Xn<:un} inherits ud Type declaration
ud ∶∶= ⊤ ∣ A{τ1, . . . , τm} Supertype

⊢ T

⊢ ∅

⊢ T T ⊢ td

⊢ T , td

T ⊢ td

⊢ l1<:X1<:u1, . . . ud = A{. . .} ⟹ A is defined in T l1<:X1<:u1, . . . ⊢ ud

T ⊢ N{l1<:X1<:u1, . . .} inherits ud

Γ ⊢ τ

Γ ⊢ l Γ ⊢ u X fresh Γ, l<:X<:u ⊢ N{. . . , X, . . .}
Γ ⊢ N{. . . , l≪u, . . .}

N{l1<:X1<:u1, . . .} inherits ud Γ ⊢ ud[X1↦τ1, . . .]
Γ ⊢ N{τ1, . . . , }

Figure 24: Validity of type declarations and types in the presence of inheri-
tance (extends Figure 8 and Figure 15)
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Γ ⊢⋆ τ

l<:V∶⋆<:u ∈ Γ

Γ ⊢⋆V Γ ⊢⋆C{τ1, . . . , τn}
Γ ⊢⋆ τ1 Γ ⊢⋆ τ2

Γ ⊢⋆ τ1 × τ2

Γ ⊢⋆ τ1 Γ ⊢⋆ τ2 Γ ⊢ τ1 <: τ2 Γ ⊢ τ2 <: τ1

Γ ⊢⋆ τ1 ∪ τ2

i ≠ j Γ ⊢⋆ τi Γ ⊢ τj <:⊥

Γ ⊢⋆ τ1 ∪ τ2

Figure 25: Type concreteness

The kind annotation,
κ ∶∶= ◦ ∣ ⋆,

allows for two options:

• kind ◦ denotes a regular variable that can be instantiated with
any type;

• kind ⋆ denotes a concrete variable that can be instantiated only
with a concrete type.

All earlier-presented definitions and reasoning apply to ◦-kinded
vars without modifications.

Because concrete variables have to be instantiated with concrete
types, the only allowed declared lower bound is ⊥. To achieve tight
bounds, a concrete type can be chosen for the upper bound. Thus, the
validity is extended as follows:

Γ ⊢ u Γ,⊥<:V∶⋆<:u ⊢ ψ

Γ ⊢ ∃⊥<:V∶⋆<:u.ψ

Figure 25 defines concreteness Γ ⊢⋆ τ. Type τ is concrete if it
is a concrete variable, a concrete invariant constructor with tight
arguments, a tuple of concrete types, a union of equivalent concrete
types, or a union of a concrete and a bottom type. The concreteness
judgment is used by the subtyping algorithm.

The subtyping algorithm requires minimal modifications, as defined
in Figure 26. All previously defined rules are applicable to both kinds
of variables. The two new rules cover the tight-bound case for a
concrete variable: as the only valid instantiation of the variable is
u, it can be used instead of ⊥ to check subtyping with the concrete
variable on the right. The same reasoning explains the new cases
for intersection ⊓Γ. Constraints for concrete unification variables are
generated in the same way as for regular variables. The key difference
is in the constraint resolution algorithm: the smallest type satisfying
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Γ ⊢ τ <: τ Γ ∣ H ⊢ τ ⋖ τ ↝ K

ST-VarRight-ConcreteTight

⊥<:V∶⋆<:u ∈ Γ Γ ⊢⋆ u
Γ ⊢ τ <: u

Γ ⊢ τ <: V

SC-VarRight-ConcreteTight

⊥<:V∶⋆<:u ∈ Γ Γ ⊢⋆ u
Γ ∣ H ⊢ τ ⋖ u ↝ K

Γ ∣ H ⊢ τ ⋖V ↝ K

τ ⊓Γ τ
′

V ⊓Γ τ
′

= u⊓Γ τ
′ where ⊥<:V∶⋆<:u ∈ Γ and Γ ⊢⋆ u

τ ⊓Γ V = τ ⊓Γ u where ⊥<:V∶⋆<:u ∈ Γ and Γ ⊢⋆ u

Solve (Γ; ∆, l<:α∶◦<:u; K)
Kα ← {l′ ≤ α ∈ K}∪ {α ≤ u′ ∈ K} ;
K′ ← K \ Kα ;
H ← dom(∆);
foreach li ≤ α, α ≤ uj ∈ Kα do

Γ ⊢ li <: uj
end
foreach li ≤ α ∈ Kα do

Γ ∣ H ⊢ li ⋖• u ↝ Kli

end
foreach α ≤ uj ∈ Kα do

Γ ∣ H ⊢ l •⋖ uj ↝ Kuj

end
ρ ← Solve(Γ; ∆; K′⋃i Kli ⋃j Kuj);
τα ← ρ(l)⋃i li;

return ρ[α↦τα]

Solve (Γ; ∆,⊥<:α∶⋆<:u; K)
Kα ← {l′ ≤ α ∈ K}∪ {α ≤ u′ ∈ K} ;
K′ ← K \ Kα ;
H ← dom(∆);
foreach li ≤ α, α ≤ uj ∈ Kα do

Γ ⊢ li <: uj
end
foreach li ≤ α ∈ Kα do

Γ ∣ H ⊢ li ⋖• u ↝ Kli

end

ρ ← Solve(Γ; ∆; K′⋃i Kli ⋃j Kuj);
τα ← ⋃i li;

Γ ⊢⋆ τα;

return ρ[α↦τα]

Figure 26: Subtyping with concrete variables

Extends Figure 11 and Figure 12, and replaces Figure 14. Constraints
resolution algorithm for regular variables is exactly the same as the al-
gorithm in Figure 14; it is provided here for convenience of comparison.

the constraints, τα = ⋃i li, needs to be concrete2 in order for constraint
resolution to succeed.

2 It is possible that there are no lower-bound constraints li, in which case instantiating
α with ⊥ would technically be incorrect. However, the absence of generated lower
bounds means that any instantiation within the declared bounds would satisfy the
constraints, so it can be picked arbitrarily; in this case, the only necessary condition
is that ¬(Γ ⊢ ρ(u)<:⊥), as otherwise, no concrete instantiations would be valid.
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E VA L UAT I O N O F M I G R AT I O N E F F O RT

To estimate the effort required for migrating existing Julia code to
a version of Julia with the restriction on existential types, I perform
a corpus analysis of all 9K packages from the official Julia package
registry. In particular, the analysis extracts type annotations from the
source code of the packages and checks how many of those satisfy the
restriction described in Chapter 4.

Out of more than 2M successfully extracted, statically identifiable
type annotations, only two do not have an equivalent type signature
that is expressible under the restriction; one more annotation has an
expressible semantic1 equivalent. These results are encouraging and
suggest that with the restriction, decidability of subtyping comes at a
minimal practical cost to expressiveness.

corpus . The chosen corpus of packages is the entire official Gen-
eral registry2: this registry is the default source of packages used by
Julia programs and contains the majority of all public Julia pack-
ages. The list of packages is obtained using the JuliaHub service3:
JuliaHub conveniently provides a JSON file4, which I process with
JuliaPkgsList.jl

5 to extract information about packages and latest
registered versions. There were 9 355 entries listed on JuliaHub as
of 2023-05-20. Out of those, using JuliaPkgDownloader.jl

6, 9 315 pack-
ages were downloaded successfully. Some JuliaHub entries were not
valid registered packages (e.g., the entry for Julia itself), some did not
contain a version, and some were no longer publicly available or could
not be processed for other reasons.

Thus, the resulting corpus consists of 172K files with 19.5M lines of
code across 9K packages (Table 2).

1 The equivalence is not currently derivable in Julia, but nonetheless, the type can be
replaced without affecting the semantics of the analyzed program.

2 https://github.com/JuliaRegistries/General
3 JuliaHub (https://juliahub.com/ui/Packages) is listed on https://julialang.
org/packages/ as one of the services for browsing Julia packages.

4 https://juliahub.com/app/packages/info
5 https://github.com/julbinb/JuliaPkgsList.jl
6 https://github.com/julbinb/JuliaPkgDownloader.jl/
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packages files lines of code

9 315 172 024 19 476 938

Table 2: Corpus of Julia packages from General registry (May 2023)

Lines of code exclude comments.

5.1 methodology

The analysis7, written in Julia and executed with Julia 1.8.5, extracts
type annotations from all .jl files in the corpus and reports annota-
tions that cannot be trivially rewritten into equivalent ones admitted
by the restricted type language. To extract type annotations, the anal-
ysis relies on the Julia parser and the MacroTools.jl8 package, which
allows for convenient pattern matching over Julia’s abstract syntax
tree. The analysis is static and, as such, does not process dynamically
generated code.

I identify and extract the following kinds of type annotations:

• method signatures: for example, Tuple{T, Vector{T}} where T is
extracted from method f(x::T, v::Vector{T}) where T = ...;

• return type annotations: for example, Bool from f(x) :: Bool = ...;

• all uses of explicit type assertions :: t outside method signatures:
these include field type annotations, run-time type assertions,
and local variable type annotations.

Type annotations are analyzed as follows:

• For each bound type variable, the analysis records information
about the position of the where-binding in a type, as well as
positions of all occurrences of the variable relative to the binding.
Position is defined by a list of constructors. For example, in the
type Tuple{Ref{T}, T, S where S} where T, variable T is bound in []

and occurs in {[Tuple, Ref], [Tuple]}; S is bound in [Tuple] and
occurs in {[]}.

• All variable occurrences are checked against the restriction using
the binding position to distinguish between top-level and inner-
to-invariant-constructor variables, which need to satisfy different
requirements.

Figure 34 provides a list of examples from the test suit of the analysis
implementation.

Some types not syntactically representable by the restriced grammar
of τ (Figure 8) have an equivalent representable counterpart (according

7 https://github.com/prl-julia/julia-sub
8 https://github.com/FluxML/MacroTools.jl

https://github.com/prl-julia/julia-sub 
https://github.com/FluxML/MacroTools.jl
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to Julia subtyping). Such unrepresentable types are not flagged by the
analysis, and they fall into one of the following two categories:

• An existential variable occurs once covariantly, for example,
Tuple{T} where T<:u: this type is equivalent to Tuple{u}, which is a
valid τ.

• An existential variable occurs only once in an invariant po-
sition, but the occurrence is separated from the binding by
covariant constructors, for example, Tuple{Vector{T}} where T or
Union{Vector{T}, Missing} where T: these types are equivalent to
Tuple{Vector{T} where T} and Union{Vector{T} where T, Missing}, re-
spectively, which are valid restricted types τ.

In Julia, the first kind of benign unrepresentable types is already auto-
matically rewritten into the equivalent existential-free form: for exam-
ple, Vector{Tuple{T} where T<:Number} is evaluated to Vector{Tuple{Number}}

in the REPL.

5.2 results

The majority of the source code was processed without failures, with
206 packages having at least one file that could not be parsed by Julia
(an example of a parsing error is given in Figure 35). In successfully
parsed files, the analysis identified a total of 2 136 609 type annotations.
Out of these annotations:

• 1 573 were not be processed at all, usually because a type vari-
able binding contained a macro or quoted expression; several
examples of that are given in Figure 36;

• 22 396 were partially processed: this happens when all type vari-
able bindings are processed successfully, but a part of the type
cannot not be processed due to a macro or quoted expression;
in this case, the analysis can miss some occurrences of type
variables.

In total, 1629 packages had at least one parsing or processing error.
Of the 2 135 036 statically identifiable, fully-or-partially analyzable

type annotations, 2 135 030 (i.e. 99.999%) were identified as satisfying
the proposed restriction, and 6 annotations were flagged as potentially
being impacted—they are listed in Figure 27.

Three of these six annotations were false positives related to Vararg.
In Julia, variadic arguments are represented as Vararg-in-Tuple types:
for example, Tuple{Vararg{Int}} stands for a tuple of arbitrarily many
integers. According to Julia subtyping, Vararg is covariant in its type
argument, whereas the analysis reported it as if it were invariant.
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� �
# false positive, package ForneyLab.jl
# src/algorithms/
# posterior_factorization.jl
Tuple{
Vararg{
Union{

T, Set{T}, Vector{T}
} where T <: Variable

}, Any}
# equivalent to:
Tuple{
Vararg{
Union{

Variable,
Set{<:Variable},
Vector{<:Variable}

}
}, Any}

# false positive, package Tries.jl
# src/Tries.jl
Tuple{
Vararg{
Pair{NTuple{N, K}, T} where N

}
} where T where K
# equivalent to:
Tuple{
Vararg{
Pair{NTuple{N, K}, T}

} where N
} where T where K

# false positive, package Tries.jl
# src/Tries.jl
Tuple{
Vararg{
Pair{NTuple{N, K}, <:Any} where N

}
} where K
# equivalent to:
Tuple{
Vararg{
Pair{NTuple{N, K}, <:Any}

} where N
} where K� �

� �
# false positive (semantically)
# package Muon.jl
# src/alignedmapping.jl
Dict{K,

Union{
AbstractArray{<:Number},
AbstractArray{

Union{Missing, T}
} where T <: Number,
DataFrame

}}
# semantically equivalent to,
# and admitted by the code:
Dict{K,

Union{
AbstractArray{<:Number},
AbstractArray{T} where

Missing<:T<:Union{Missing, Number},
DataFrame

}}

# true positive, package Alicorn.jl
# test/Utils/UtilsTests.jl
Array{

Tuple{T,
Array{T, N} where N,
Bool

} where T
}
# admitted by the code:
Array{

Tuple{Any,
Array{<:Any, <:Any},
Bool

}}

# true positive
# package UnitfulEquivalences.jl
# src/UnitfulEquivalences.jl
Tuple{Type{

Union{
Quantity{T, D, U},
Level{L, S,

Quantity{T, D, U}
} where {L, S}

} where {T, U}
}} where D
# cannot be easily rewritten� �

Figure 27: Type annotations flagged by the analysis:
false positives (left) and true positive (right)
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Furthermore, one of the remaining three type annotations can be
rewritten into a semantically equivalent type that does satisfy our
restriction. The flagged type in question—the Dict type at the top right
of Figure 27—contains an unrepresentable type:� �

AbstractArray{Union{Missing, T}} where T<:Number� �
The above type is semantically equivalent to:� �

AbstractArray{T} where Missing<:T<:Union{Missing, Number}� �
However, In Julia 1.8.5, the former type is a subtype of the latter but
not vice versa.

Thus, only two remaining types truly cannot be expressed under
the proposed restriction. In the first case,� �

Array{Tuple{T, Array{T, N} where N, Bool} where T}� �
the problem is that variable T occurs twice. In the second case, which
seemingly has the same problem as above,� �

Tuple{Type{Union{

Quantity{T, D, U},

Level{L, S, Quantity{T, D, U}} where {L, S}

} where {T, U}

}} where D� �
the type is equivalent to� �

Tuple{Type{Union{

Quantity{T, D, U} where {T, U},

Level{L, S, Quantity{T, D, U}} where {L, S, T, U}

}

}} where D� �
where all variables occur exactly once. However, in the second compo-
nent of the union, variables T, U are not bound immediately outside
the invariant Quantity.

Additionally, I extract and analyze type declarations. There were
a total of 141 232 declarations, 239 of which could not be processed
and 3 804 were partially processed (similarly to the case of type anno-
tations). Only one type declaration did not satisfy the restriction in its
supertype declaration, which was in the same package and with the
same type as the false positive Dict{...Union{T,Missing}...}.
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5.3 migration strategies

In general, for cases where an equivalent representable type does not
exist, I suggest two migration strategies:

1. Use more permissive types. For example, replace unrepre-
sentable Ref{Dict{T, T} where T} with Ref{Dict{<:Any,<:Any}}. This
approach may require changing type annotations in method sig-
natures as well as code where type-annotated values are created:

� �
f(r :: Ref{Dict{T,T} where T}) = ...

r = Ref{Dict{T,T} where T}(...)

f(r)

# transforms to

f(r :: Ref{Dict{<:Any,<:Any}}) = ...

r = Ref{Dict{<:Any,<:Any}}(...)

f(r)� �
If it is necessary that the type arguments of the dictionary are
the same, a dynamic check can be added. For instance, if d

is a dictionary value, the following code ensures that the type
parameters are equivalent:

� �
typeof(d).parameters[1] == typeof(d).parameters[2]� �

If there is already a method definition for the more permissive
type, it needs to be merged with the no-longer-supported defi-
nition: to “dispatch” to the right code, a dynamic check akin to
the above can be used.

2. Define a wrapper type and use it instead of the unrepresentable
one. For example:

� �
struct EqDict{T}

d :: Dict{T,T}

end� �
Then, instead of Ref{Dict{T, T} where T}, the representable type
Ref{EqDict{<:Any}} can be used, but the original data needs to be
wrapped.
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migrating the three examples . For the three examples iden-
tified by the analysis (listed on the right of Figure 27 in Chapter 5.2),
I performed a manual inspection and attempted migrating the code,
which included the following steps:

• run tests;

• insert @info "inside" near the impacted type annotation and run
tests again to ensure that the affected part of the program is
exercised by the tests (macro @info simply prints its argument);

• modify the code and run tests again, compare the result.

Two out of the three examples were successfully migrated with a
single change—in the problematic type annotation. In both cases, the
problematic type annotations were field or type variable annotations,
and one of those cases also included the above mentioned problematic
supertype declaration.

The first successful migration was done for Muon.jl Julia package:
Figure 28 depicts relevant code and shows two necessary changes
in comments. There, one change is in a supertype declaration, and
another is in a field type annotation.

The second successful migration was done for Alicorn.jl: Figure 29

depicts relevant code and shows one necessary change in a comment.
There, the change is in the type annotation of local variable examples.

The final example, depicted in Figure 30, involves Type and dispatch
on type values (discussed in the first paragraph on page 8). Because
the problematic type annotation appears in a method that is used to
macro-generate other methods, I could not easily track all the uses of
the method and migrate it. The example also suggests that the case of
Type{T} might need special treatment to allow T to be instantiated with
type signatures ψ rather than τ. To ensure decidability, an incomplete
equality relation (discussed on page 26) could likely be used in place
of the left-to-right and right-to-left subtyping checks.

Overall, the results of the static analysis of type annotations are
encouraging: in practice, the impact of the restriction appears to be
limited.
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� �
struct AlignedMapping{T <: Tuple, K, R} <:
AbstractAlignedMapping{
T,
K,
Union{
AbstractArray{<:Number},
# MIGRATION: replace with
# AbstractArray{T} where Missing <: T <: Union{Number,T}
AbstractArray{Union{Missing, T}} where T <: Number,
AbstractDataFrame,

},
}
ref::R # any type as long as it supports size()
d::Dict{K,
Union{

AbstractArray{<:Number},
# MIGRATION: replace with
# AbstractArray{T} where Missing <: T <: Union{Number,T}
AbstractArray{Union{Missing, T}} where T <: Number,
DataFrame,

},
}

function AlignedMapping{T, K}(r, d::AbstractDict{K})
where {T <: Tuple, K}

@info "inside AlignedMapping"
for (k, v) in d

checkdim(T, v, r, k)
end
return new{T, K, typeof(r)}(r, d)

end
end� �

Figure 28: Muon.jl code fragment with unrepresentable types

� �
function _getExamplesFor_isElementOf()
# MIGRATION: replace with
# examples::Array{ Tuple{Any, Array, Bool} } = [
examples::Array{ Tuple{T, Array{T,N} where N, Bool} where T } = [
("a", ["a" "b" "c" "d"], true),
(1, [2 3; 4 5], false),

]
@info "inside _getExamplesFor_isElementOf"
return examples

end� �
Figure 29: Alicorn.jl code fragment with unrepresentable type
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� �
# COULD NOT MIGRATE
dimtype(::Type{
Union{
Quantity{T,D,U},
Level{L,S,Quantity{T,D,U}} where {L,S}

} where {T,U}
}) where D = begin

@info "inside dimtype"
typeof(D)

end

macro eqrelation(name, relation)
...
quote
UnitfulEquivalences.edconvert(

::dimtype($(esc(a))), x::$(esc(b)), ::$(esc(name))
) = x * $(esc(rhs))
UnitfulEquivalences.edconvert(

::dimtype($(esc(b))), x::$(esc(a)), ::$(esc(name))
) = x / $(esc(rhs))
nothing

end
...

end� �
Figure 30: UnitfulEquivalences.jl code fragment with unrepresentable

type (could not be migrated easily)
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R E L AT E D W O R K

Subtyping is typically associated with object-oriented programming
languages and static type systems. As a part of a type system, sub-
typing allows an expression of a more specific type (subtype) to be
used in place where an expression of a more general type (supertype)
is expected, enabling more programs to be typable. Subtyping can
also be used at run time in both statically and dynamically typed
languages to perform type tests, casts, and dynamic dispatch.

There is a wide variety of research related to subtyping; this chapter
focuses primarily on work that concerns decidability of subtyping,
semantic subtyping, and subtyping of Java generics with wildcards,
as Julia’s subtype relation was inspired by the latter two [Bezanson
2015]. In particular, the treatment of tuple and union types aligns with
the semantic subtyping approach, and bounded existential types are
commonly used as a model of wildcards.

6.1 decidability of subtyping

Even in the context of statically typed languages, decidability is
a desirable property of static type systems and subtype relations,
but establishing decidability can be challenging. For example, the
undecidability of checking subtyping for Java generics was established
only fairly recently by Grigore [2017], and the previously suspected
undecidability of subtyping and type checking for the core calculus
of Scala 3, DOT (Dependent Object Calculus) [Amin et al. 2016], was
proven by Hu and Lhoták [2019].

Typically, undecidability is shown by a reduction from a known
undecidable problem. For example, the halting problem for Turing
machines is used to prove the undecidability of Java generics [Grigore
2017] as well as System F<∶ [Pierce 1992]. F<∶ [Cardelli et al. 1991] is
a language with bounded universal types, where the undecidability
of subtyping is caused by the combination of contravariance and
rebounding of type variables in the context. Proofs by reduction from
F<∶ are commonly used to establish undecidability in languages with
some form of bounded quantification. For instance, the undecidability

75
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of DOT [Hu and Lhoták 2019] is shown by reducing a variant of F<∶ to
D<∶, a restriction of DOT featuring type members and path-dependent
types. A similar approach is used by Mackay et al. [2019] for Wyvcore,
another simplification of DOT featuring path-dependent and recursive
types. In the case of Julia, the undecidability of subtyping also follows
from its power to encode a variant of F<∶, as discussed in Section 3.3.

In practice, the benefits of having a more expressive type system
might outweigh the cost of undecidability, which amounts to the
compiler crashing or not terminating on some input programs. If
the undecidability arises only in rare, contrived cases, being able to
successfully type check more benign programs might be preferable to
reliably rejecting those programs with a decidable but less expressive
type system.

However, when subtyping is used at run time, the cost of undecid-
ability is higher because a crash or non-termination occurs during
program execution rather than compilation. In mainstream program-
ming languages that require run-time subtyping checks, run-time
types are often more restrictive than static ones, which simplifies the
corresponding subtyping problem. For example, in the .NET interme-
diate language, the decidability of subtyping was shown for ground
types, which are used at run time [Kennedy and Pierce 2007]1. In
the case of Java generics, where static subtyping is undecidable, the
type erasure mechanism allows for decidable run-time subtyping. In
Julia, however, it is the run-time subtyping that is undecidable, yet
subtyping is heavily used by the dynamic semantics.

Identifying decidable fragments of undecidable type systems and
subtype relations remains an important challenge. In some cases, it
might be possible to recover decidability by restricting the system in a
way that does not affect most practical programs. For example, the
material-shape separation for Java generics [Greenman et al. 2014] en-
ables decidability of subtyping by limiting F-bounded polymorphism
(i.e., recursive constraints on type variables) to the subset of types,
called shapes, that are used exclusively as constraints; this separation
appears to be in agreement with an industry-wide practice. Mackay
et al. [2019] extend the material-shape separation to the context of
path-dependent and recursive types. Earlier, Kennedy and Pierce
[2007] identified three decidable fragments of undecidable subtyping
in the context of nominal inheritance and variance without F-bounded
polymorphism: the fragments can be obtained by restricting either
contravariance, or expansive class tables, or multiple instantiation
inheritance. Aiming for decidable subtyping, Julia designers deliber-
ately restricted the language to not support F-bounded polymorphism,

1 Due to the lack of documentation, it is not clear whether subtyping between ground
types is still decidable in C# as of 2023.
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contravariant constructors, and multiple inheritance. Based on those
restrictions, Bezanson [2015] conjectured the decidability of subtyping
but pointed out that the combination of invariant constructors and con-
travariance in lower bounds of existential types is akin to the source
of undecidability in F<∶; the conjecture relied on the fact that left- and
right-hand side variables are treated asymetrically in Julia. Still, Julia
subtyping is powerful enough to encode the undecidable F<∶.

A number of decidable subtype relations, e.g. Wyvsel f [Mackay
et al. 2019] and Kernel D<∶ [Hu and Lhoták 2019], adopt subtyping
rules inspired by a decidable, restricted variant of F<∶ called Ker-
nel F<∶ [Cardelli and Wegner 1985]. The downside of such relations
is their rejecting more subtyping judgments than is desirable in prac-
tice. A strictly more powerful than Kernel D<∶ system, Strong Kernel
D<∶ [Hu and Lhoták 2019], is also decidable. This relation splits the
type variable context into two parts, for the left- and right-hand sides
of the subtyping judgment, thus avoiding the problematic rebounding
of type variables in a single context; the same idea applies to F<∶ to
obtain the decidable Strong Kernel F<∶. A similar approach with con-
text splitting is used by Mackay et al. [2019] for decidable subtyping
in Wyv f ix. In both Wyv f ix and Strong Kernel systems, an undesired
consequence of maintaining two separate contexts is that the resulting
subtype relations lack transitivity. Another decidable variant of F<∶,
called FR

<∶, was proposed by Mackay et al. [2020]. There, rebound-
ing of type variables is allowed only for type bounds that do not
themselves contain bounded quantification, with unrestricted types
resorting to the Kernel subtyping rule. With this syntactic restriction,
FR
<∶ admits some useful judgments rejected by Kernel F<∶, yet does not

lose transitivity.

6.2 semantic subtyping

In semantic subtyping [Frisch et al. 2008], types are given a set-
theoretic interpretation, and subtyping is defined as the set inclusion
on interpretations. For example, Hosoya et al. [2000] define a static
type system for an XML processing language and interpret types as
sets of valid XML documents. Thus, semantic subtyping provides an
intuitive mental model of types to the users. In addition, it automati-
cally satisfies useful properties such as reflexivity and transitivity.

However, semantic subtyping still needs a decision procedure, and
that is where the complexity typically comes from, especially if effi-
ciency matters. For example, in the Julia language, semantic subtyping
of union and tuple types relies on a space-efficient algorithm that lazily
explores the disjunctive normal form [Chung et al. 2019]. In [Frisch
et al. 2002], which supports not only union, but also intersection and
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negation types, subtyping t ≤ s is checked via the emptiness test
t and ¬s ≈ ⊥ and also relies on the disjunctive normal form. Related
to Julia’s treatment of right-hand side existential variables as unifi-
cation variables, Castagna et al. [2015] generate and solve subtype
constraints as a part of type inference process in their set-theoretic
framework with union, intersection, and negation types. Schimpf
et al. [2023] successfully apply the same framework to typing Erlang.
However, their approach to constraint solving does not translate to
Julia due to the presence of invariant constructors and impredicativity.

While types such as unions and tuples have a straightforward se-
mantic interpretation, other types that are common for statically typed
languages can be challenging to interpret. To this end, Frisch et al.
[2002] provide an interpretation for function types, and Castagna and
Xu [2011] interpret predicative parametric polymorphism. In the latter,
the interpretation needs to be parameterized by semantic assignments
of type variables. In the context of object-oriented languages, Dardha
et al. [2016] propose an integration of structural types and semantic
subtyping, and Ancona and Corradi [2016] study semantic subtyping
for imperative languages with mutable fields. In the case of the Ju-
lia language, the key challenge is the combination of impredicative
bounded existential types and invariant type constructors.

6.3 java wildcards

The wildcard mechanism of Java generics [Torgersen et al. 2004]
provides use-site variance of parametric types [Krab Thorup and
Torgersen 1999]. For example, a variable of type List<? extends

Number> can be assigned any list with the element type that is a sub-
type of Number; using the variable, elements of the list can be safely
read at type Number. Use-site variance has been recognized as a re-
stricted form of bounded existential types [Igarashi and Viroli 2002].
Thus, the wildcard-typed list above represents an existential type
∃X<:Number.List<X>. There have been multiple formalizations of Java
wildcards, such as WildFJ [Torgersen et al. 2005] and TameFJ [Cameron
et al. 2008], but they were focused on type soundness rather than a
decidable subtyping algorithm. Smith and Cartwright [2008] found
inconsistencies in Java’s type inference and subtyping algorithms and
proposed a solution using a limited form of union types, with a
conjecture on the decidability of subtyping.

Subtyping Java wildcards is challenging and, as shown by Grigore
[2017], undecidable. Wehr and Thiemann [2009] identify multiple
undecidable subtype relations for bounded existential types in formal
models inspired by Java. Tate et al. [2011] highlight multiple sources
of non-termination in Java subtyping, e.g. the presence of recursive
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constraints on type variables and wildcards being allowed in the
inheritance hierarchy; by making practical restrictions on the Java
language, they provide a terminating subtyping algorithm. Julia lacks
all the Java features that were linked to non-termination of subtyping
but supports union and existential types, which are not present in
Java’s surface language.



7

C O N C L U S I O N S A N D F U T U R E W O R K

The specification of Julia subtyping (Chapter 3.2) proved essential
for revising Julia’s subtyping algorithm, finding bugs, and detecting
its undecidability. The specification can still be used by Julia program-
mers to better understand subtyping and multiple dispatch, although
it no longer captures all aspects of subtyping due to changes between
Julia versions 0.6.2 and 1.9.2.

Because the undecidability of subtyping affects program execution,
finding a decidable subtype relation without sacrificing too much ex-
pressive power is a desirable direction for evolving the Julia language.
The proposed restriction and its corresponding decidable subtyp-
ing (Chapter 4) provide a good candidate for such evolution: less
than 0.01% of statically identifiable type annotations do not satisfy
the restriction, and most of them can be rewritten without affecting
program behavior (Chapter 5). Furthermore, the proposed subtype
relation can serve as a specification to evaluate the correctness of an
implementation of subtyping, should Julia maintainers choose to use
this work.

The results of the static corpus analysis are promising, but further
evaluation of the restriction is needed. First, some Julia programs
generate code with macros and eval, and such code is not processed
by the static analysis. Second, Julia internally relies on a data-flow
analysis to infer types and generate optimized, type-specialized code.
Therefore, not only user-defined code can be impacted by the restric-
tion, but multiple components of the compiler, too. Thus, there are
several avenues for future work:

• Conduct a dynamic corpus analysis to check the restriction for
all types encountered during program execution. The analysis
should be able to detect restriction violations in both dynamically
generated code and the results of type inference.

• Examine the interaction of the restricted type language with
relevant parts of the Julia compiler.

• Provide a correct and efficient implementation of the subtyping
algorithm from Chapter 4.
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Decidable subtyping proposed in this work can be of interest for lan-
guages other than Julia, as it extends use-site-variance subtyping with
more expressive, top-level existential types. However, the framework
I presented should be applied with care: for example, its interaction
with more expressive nominal subtyping may not be straightforward.
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A
A P P E N D I X

a.1 properties of subtyping

a.1.1 Decidable Subtyping

Lemma 13 (Context weakening in M (Lemma 5)). The measure of a
type signature does not change if the environment is extended (in any position)
with a variable that occurs neither in the signature nor in the environment,
i.e.,∀ψ, Γ, Γ′.∀l<:V<:u with ¬ occ(V; ψ) and ¬ occ(V; Γ) and ¬ occ(V; Γ′).

M(Γ++ Γ′; ψ) = M(Γ, l<:V<:u++ Γ′; ψ),

where Γ++ Γ′′ denotes the concatenation of lists, and occ is defined in Fig-
ure 18.

Proof. By strong induction on n = ∣Γ∣+ ∣Γ′∣+ ∣ψ∣.
Case n = 0 is not possible: the minimal size of a type signature is 1.
Base cases for ⊤ and ⊥ are straightforward; in the base case for V′,

environment Γ++ Γ′ is empty and V ≠ V′, meaning that

M(⋅; V′) = 1 = M(l<:V<:u; V′).

In the inductive step for n, the induction hypothesis (IH) states that
∀n′ < n.∀ψ

′, Γ′′, Γ′′′ with n′ = ∣Γ′′∣+ ∣Γ′′′∣+ ∣ψ′∣.∀l<:V<:u with ¬ occ(V; ψ
′)

and ¬ occ(V; Γ′′) and ¬ occ(V; Γ′′′).

M(Γ′′++ Γ′′′; ψ
′) = M(Γ′′, l<:V<:u++ Γ′′′; ψ

′).

Case analysis on ψ. Base cases ⊤ and ⊥ are straightforward. Cases
×, N{. . .}, and ∪ are also straightforward using the induction hypoth-
esis for components of ψ. The remaining cases are:

• Case V′. Case analysis on Γ′.

– Case ⋅. Because ¬ occ(V; V′), we know V ≠ V′. Thus,
M(Γ, l′<:V<:u′; V′) = M(Γ; V′) by definition of M.
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– Case Γ′, l′<:V′
<:u′. By definition,

M(Γ++ Γ′, l′<:V′
<:u′; V′) = 1+M(Γ++ Γ′; l′)+M(Γ++ Γ′; u′).

Since ∣Γ∣+ ∣Γ′∣+ ∣l′∣ < ∣Γ∣+ ∣Γ′, l′<:V′
<:u′∣+ ∣V′∣ = ∣Γ∣+

∣Γ′∣+ ∣l′∣+ ∣u′∣+ 1, the IH applies with Γ′′ = Γ, Γ′′′ = Γ′, ψ
′
=

l′, which gives M(Γ++ Γ′; l′) = M(Γ, l<:V<:u++ Γ′; l′), and
similarly for u′. Thus,

M(Γ++ Γ′, l′<:V′
<:u′; V′) = M(Γ, l<:V<:u++ Γ′, l′<:V′

<:u′; V′).

• Case ∃l′<:V′
<:u′.ψ. By definition,

M(Γ++ Γ′;∃l′<:V′
<:u′.ψ)

=

1+M(Γ++ Γ′; l′)+M(. . . u′)+M(Γ++ Γ′, l′<:V′
<:u′; ψ).

Similarly to the last subcase of the V′ case, the IH applies to l′

and u′. Furthermore, since ∣Γ∣ + ∣Γ′∣ + ∣l′∣ + ∣u′∣ + ∣ψ∣ < ∣Γ∣ +
∣Γ′∣+ 1+ ∣l′∣+ ∣u′∣+ ∣ψ∣, the IH applies to ψ with Γ′′ = Γ, Γ′′′ =
(Γ′, l′<:V′

<:u′), ψ
′
= ψ. All pieces combined,

M(Γ++ Γ′;∃l′<:V′
<:u′.ψ) = M(Γ, l<:V<:u++ Γ′;∃l′<:V′

<:u′.ψ).

a.1.2 Unification-Free Subtyping

Lemma 14 (Subtyping of ⊥ implies arbitrary subtyping (Lemma 6)).

∀τ, δ⊥, Γ. Γ ⊢ τ <: δ⊥[⊥] ⟹ (∀τ
′, δ

′. Γ ⊢ δ
′[τ]<: τ

′).

Proof. By induction on the derivation of Γ ⊢ τ <: δ⊥[⊥].

• Case ST-Bot Γ ⊢ δ[⊥]<: δ⊥[⊥] where τ = δ[⊥].
The case concludes by ST-Bot: Γ ⊢ δ

′[δ[⊥]]<: τ
′.

• Case ST-VarLeft Γ ⊢ δ[V]<: δ⊥[⊥].
By the form of the rule, Γ ⊢ δ[u]<: δ⊥[⊥]. By IH, Γ ⊢

δ
′[δ[u]]<: τ

′. Thus, the case concludes by ST-VarLeft: Γ ⊢

δ
′[δ[V]]<: τ

′.

• Case ST-Tuple, subcase where δ⊥ = δ
′
⊥ × τ

′
2 (δ⊥ = □ is not

possible, and δ⊥ = τ1 × δ
′
⊥ is proved analogously), τ = τ1 × τ2:

Γ ⊢ τ1 × τ2 <: δ
′
⊥[⊥]× τ

′
2.
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By the form of the rule, Γ ⊢ τ1 <: δ
′
⊥[⊥]. By IH, Γ ⊢

δ
′h[τ1]<: τ

′ for all δ
′h, so we can take it to be δ

′[□× τ2]. Thus,
the case concludes by IH: Γ ⊢ δ

′[τ1 × τ2]<: τ
′.

• Case ST-UnionLeft Γ ⊢ δ[τ1 ∪ τ2]<: δ⊥[⊥] where τ = τ1 ∪

τ2. By the form of the rule, Γ ⊢ δ[τ1]<: δ⊥[⊥] and Γ ⊢

δ[τ2]<: δ⊥[⊥]. By IH, Γ ⊢ δ
′[δ[τ1]]<: τ

′ and Γ ⊢ δ
′[δ[τ2]]<: τ

′.
Thus, the case concludes by ST-UnionLeft: Γ ⊢ δ

′[δ[τ1 ∪

τ2]]<: τ
′.

The remaining cases (ST-Top, ST-VarRefl, ST-VarRight, ST-Inv, ST-
UnionRight) are not possible.

Lemma 15 (Subtyping of inner union on the right (Lemma 7)). ∀τ, δ
′, τ

′
1, τ

′
2, Γ, with

⊢ Γ and Γ ⊢ τ, δ
′, τ

′
1, τ

′
2.

Γ ⊢ τ <: δ
′[τ′1 ∪ τ

′
2]

⟹

(∀δ1, δ2, with Γ ⊢ δ1, δ2 and Γ ⊢ δ1 <: δ2. Γ ⊢ δ1[τ]<: δ2[δ′[τ′1]]∪ δ2[δ′[τ′2]]).

Proof. By induction on the derivation of Γ ⊢ τ <: δ
′[τ′1 ∪ τ

′
2].

• Case ST-Bot by ST-Bot.

• Case ST-VarLeft by the form of the rule, IH, and ST-VarLeft.

• Case ST-Tuple, subcase where δ
′
= δ

′′× τ
′: Γ ⊢ τ1× τ2 <: δ

′′[τ′1∪
τ
′
2] × τ

′. By the form of the rule, Γ ⊢ τ1 <: δ
′′[τ′1 ∪ τ

′
2] and

Γ ⊢ τ2 <: τ
′.

By IH applied to Γ ⊢ τ1 <: δ
′′[τ′1∪τ

′
2], Γ ⊢ δ

h
1[τ1]<: δ

h
2[δ′′[τ′1]]∪

δ
h
2[δ′′[τ′2]] for all δ

h
1 , δ

h
2 s.t. Γ ⊢ δ

h
1 <: δ

h
2 . Thus, we can take them

to be δ2[□× τ2] and δ2[□× τ
′], respectively, which concludes the

case with Γ ⊢ δ1[τ1 × τ2]<: δ2[δ′′[τ′1]× τ2]∪ δ2[δ′′[τ′2]× τ
′]

• Case ST-UnionLeft by the form of the rule, IH, and ST-UnionLeft.

• Case ST-UnionRight, subcase i = 1 where δ
′
= □: Γ ⊢ τ <: τ

′
1 ∪

τ
′
2. By the form of the rule, Γ ⊢ τ <: τ

′
1. By assumption,

Γ ⊢ δ1 <: δ2, and thus, Γ ⊢ δ1[τ]<: δ2[τ′1]. The case concludes
by ST-UnionRight with i = 1: Γ ⊢ δ1[τ]<: δ2[τ′1]∪ δ2[τ′2].

The remaining cases (ST-Top, ST-VarRefl, ST-VarRight, ST-Inv) are
not possible.

Lemma 16 (Adding inner union on the right (Lemma 8)). ∀τ, δ
′, τ

′, Γ,
with ⊢ Γ and Γ ⊢ τ, δ

′, τ
′.

Γ ⊢ τ <: δ
′[τ′] ⟹ (∀τ

′′. Γ ⊢ τ <: δ
′[τ′ ∪ τ

′′]).
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Proof. By induction on the derivation of Γ ⊢ τ <: δ
′[τ′].

• Case ST-Top where δ
′
= □. By assumption Γ ⊢ τ <:⊤ and

ST-UnionRight with i = 1, Γ ⊢ τ <:⊤∪ τ
′′.

• Case ST-Bot by ST-Bot.

• Case ST-VarRefl where δ
′
= □ by assumption and ST-UnionRight

with i = 1.

• Case ST-VarLeft by the form of the rule, IH, and ST-VarLeft.

• Case ST-VarRight where δ
′
= □ by assumption and ST-UnionRight

with i = 1.

• Case ST-Tuple. Subcase δ
′ by assumption and ST-UnionRight

with i = 1. The other two subcases by the form of the rule, IH,
and ST-Tuple.

• Case ST-Inv where δ
′
= □ by assumption and ST-UnionRight

with i = 1.

• Case ST-UnionLeft by the form of the rule, IH, and ST-UnionLeft.

• Case ST-UnionRight where δ
′
= □ by assumption and ST-

UnionRight with i = 1.
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a.2 semantic model

Julia’s subtype relation was inspired by semantic subtyping. The
description of the original Julia design [Bezanson 2015] suggested an
intuitive interpretation of types as sets of values, but the interpretation
is not well defined. Furthermore, the treatment of invariant parametric
types in the interpretation does not match the subtype relation. In
particular, for concrete nominal Name, the interpretation

JName{τ}K = {x ∣ typeof(x) = Name{τ}}

does not account for the fact that there are multiple syntactic repre-
sentations τ

′ corresponding to the same interpretation as τ. Thus, for
example, types Vector{Union{Int,Any}} and Vector{Any} are not equiva-
lent according to the interpretation, but they are equivalent in Julia.

a.2.1 Tuples and Unions

In [Belyakova 2019], I proposed and mechanized in Coq a semantic
interpretation of (a subset of) Julia types τ as sets of concrete value
types σ (or type tags) rather than values, with semantic subtyping de-
fined as JτK ⊆ Jτ

′K. For the type language of non-parametric nominal
types, tuples, and unions, a decidable syntactic subtype relation based
on disjunctive normal form coincides with the set inclusion of inter-
pretations. Figure 31 presents the interpretation and corresponding
syntactic subtyping in the style of Chapter 4 for the type language of
base types N, covariant tuples, and unions. Σ denotes the set of all
value types σ.

In [Belyakova 2019], I show that the decidable syntactic subtype
relation is sound and complete with respect to the interpretation.

Theorem 8. ∀τ, τ
′.

τ <∶ τ
′

⟺

(∀σ. σ ∈ JτK ⟹ σ ∈ Jτ
′K).

a.2.2 Invariant Constructors

The interpretation in Figure 31 can be extended to support invariant
type constructors such as Vector{...}. To account for the issue of
multiple syntactic representations of types, in the new system, types
are given an indexed interpretation J⋅Kn. This approach was also
mechanized in Coq.
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Grammar

τ ∶∶= ⊤ ∣ ⊥ ∣ N ∣ τ1 × τ2 ∣ τ1 ∪ τ2 Type

σ ∶∶= N ∣ σ1 × σ2 Concrete value type

δ ∶∶= □ ∣ δ× τ ∣ τ × δ Distributivity context

Interpretation J⋅K

J⊤K = Σ
J⊥K = ∅
JNK = {N}

Jτ1 × τ2K = {σ1 × σ2 ∣ σ1 ∈ Jτ1K, σ2 ∈ Jτ2K}
Jτ1 ∪ τ2K = Jτ1K∪ Jτ2K

Subtyping τ <: τ
′

τ <:⊤ δ[⊥]<: τ
′ N <: N

τ1 <: τ
′
1 τ2 <: τ

′
2

τ1 × τ2 <: τ
′
1 × τ

′
2

δ[τ1]<: τ
′

δ[τ2]<: τ
′

δ[τ1 ∪ τ2]<: τ
′

∃i. τ <: τ
′
i

τ <: τ
′
1 ∪ τ

′
2

Figure 31: Semantic interpretation and decidable subtyping for simple types

Figure 32 defines the extension. Intuitively, the 0-interpretation is
not allowed to look inside invariant type constructor and contains
all value types with the same constructor name. The higher the
interpretation, the more spurious elements are filtered out; since the
equality of the arguments is checked in the lower interpretation, the
definition is well formed. Then, semantic subtyping is defined as:

∀w. JτKw ⊆ Jτ
′Kw.

Despite the more complex indexed interpretation, the syntactic sub-
type relation is still sound and complete.

Theorem 9. ∀τ, τ
′.

τ <∶ τ
′

⟺

(∀w. ∀σ. σ ∈ JτKw ⟹ σ ∈ Jτ
′Kw).

a.2.3 Existential Types

To match the intuition described in Chapter 3, an existential type and
type variable can be interpreted as:

J∃l<:X<:u.τK
η
w = ⋃JlK

η
w ⊆ s⊆ JuK

η
w
JτK

η[X↦s]
w

JXK
η
w = η(X),

where η maps variables to interpretation sets.
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Grammar
τ ∶∶= . . . ∣ N{τ1, . . . , τn} Type

σ ∶∶= . . . ∣ N{τ1, . . . , τn} Concrete value type

Interpretation J⋅Kw

J⊤Kw = Σ
J⊥Kw = ∅

Jτ1 × τ2Kw = {σ1 × σ2 ∣ σ1 ∈ Jτ1Kw, σ2 ∈ Jτ2Kw}
Jτ1 ∪ τ2Kw = Jτ1Kw ∪ Jτ2Kw

JN{τ1, . . . , τn}K0 = {N{τ
′
1, . . . , τ

′
n}}

JN{τ1, . . . , τn}Kw+1 = {N{τ
′
1, . . . , τ

′
n} ∣ ∀i. Jτ

′
i Kw = JτiKw}

Subtyping τ <: τ
′

...
τi <: τ

′
i τ

′
i <: τi

N{τ1, . . . , τn}<: N{τ
′
1, . . . , τ

′
n}

Figure 32: Semantic interpretation and decidable subtyping for invariant
constructors

However, because of invariant constructors, an interpretation cannot
be simply a set of value type tags1. Consider the following example:

J∃Ref{Int}<:X<:Ref{Int}.Vector{X}K1

=

⋃s=JRef{Int}K1
JVector{X}K[X↦s]

1

=

{ Vector{τ} ∣ JτK0 = JRef{Int}K1 }
=

{ Vector{τ} ∣ JτK0 = {Ref{τ
′} ∣ Jτ

′K0 = {Int}} }
=

{ Vector{τ} ∣ JτK0 = {Ref{Int},Ref{Int∪⊥}, . . .} }

Note that there are no closed types τ such that

JτK0 = {Ref{Int},Ref{Int∪⊥},Ref{Int∪ Int}, . . .},

because the 0-interpretation of any Ref-type includes arbitrary Ref{τ
′},

not just Int-interpreted τ
′. Therefore, the existential type

∃Ref{Int}<:X<:Ref{Int}.Vector{X}

is not a supertype of
Vector{Ref{Int}},

which does not match Julia subtyping. The crux of the problem is that
X can be interpreted in a smaller w than it was instantiated with.

1 Tags are assumed to be closed, i.e. do not contain free variables.
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Grammar

τ, l, u ∶∶= . . . ∣ X ∣ ∃l<:X<:u.τ Type

σ ∶∶= . . . where FV(σ) = ∅ Concrete value type

Domain
Σ̂ = {σ

k ∣ σ ∈ Σ, k ∈ N}
Interpretation J⋅K

η
w

J⊤K
η
w = {σ

k ∣ k ≤ w}
J⊥K

η
w = ∅

Jτ1 × τ2K
η
w = {(σ1 × σ2)k ∣ σ1

k
∈ Jτ1K

η
w, σ2

k
∈ Jτ2K

η
w}

Jτ1 ∪ τ2K
η
w = Jτ1K

η
w ∪ Jτ2K

η
w

JN{τ1, . . . , τn}K
η
0 = {N{τ

′
1, . . . , τ

′
n}0}

JN{τ1, . . . , τn}K
η

w+1 = {N{τ
′
1, . . . , τ

′
n}w+1 ∣ ∀i. Jτ

′
i K

η
w = JτiK

η
w} ∪ JN{τ1, . . . , τn}K

η
w

J∃l<:X<:u.τK
η
w = ⋃

0≤w′
≤w

⋃
JlK

η

w′
⊆ s⊆ JuK

η

w′

JτK
η[X↦s]
w′

JXK
η
w = {σ

k ∣ σ
k
∈ η(X) and k ≤ w}

Figure 33: Semantic interpretation for existential types

In the spirit of [Ahmed et al. 2003], the domain of interpretation can
be redefined as a set of indexed tags instead of just tags, as presented
in Figure 33. In this case, whenever a variable is interpreted in w, all
tags originally produced by the potentially higher interpretation are
removed. It is easy to see by induction on τ that

w′
≤ w ⟹ JτK

η

w′ ⊆ JτK
η
w.

The semantic interpretation can be used to examine soundness of
decidable syntactic subtyping presented in Chapter 4.1, as well as
equivalent rewritings discussed in Chapter 5.2.
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Satisfy the restriction� �
1 Pair{T, T} where T
2 Tuple{T, Tuple{T, Int}} where T
3 Tuple{Ref{T}} where T
4 Tuple{T, Ref{T}} where T
5 Tuple{Ref{Tuple{T}}} where T
6 Vector{Union{T, Int}} where T
7 Ref{Ref{T} where T} where T
8 Ref{Pair{T, S} where S} where T
9 Pair{S, Pair{Int, T} where T<:S} where S

10 Tuple{S, Pair{T, S} where T<:S} where S
11 Tuple{Ref{T} where T>:S} where S
12 Ref{T} where T<:(Ref{S} where S)
13 Tuple{T} where T<:Ref{Ref{<:Any}}� �

Do not satisfy the restriction� �
1 Ref{Pair{T, T} where T}
2 Ref{Tuple{Pair{T, T} where T}}
3 Tuple{T} where T>:(Pair{S,S} where S)
4 Vector{Vector{Union{T, Int}} where T}
5 Vector{Ref{Tuple{T}} where T}� �

Figure 34: Test cases for the analysis of type annotations

� �
Error: Couldn't process expression
e =
:($(Expr(:$, :d))->begin

#= none:54 =#
Base.axes($(Expr(:$, :arraysym)), $(Expr(:$, :d)))

end)
err =
ArgumentError: Not a function definition: :($(Expr(:$, :d))->begin

#= none:54 =#
Base.axes($(Expr(:$, :arraysym)), $(Expr(:$, :d)))

end)� �
Figure 35: An example of a parsing error

a.3 evaluation
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� �
Error: Couldn't process type annotation

tastr = "Tuple{Union{Document, Node}} where \$(esc.(P)...)"
err = AssertionError: Unsupported lb-var-ub format

Error: Unsupported Expr type annotation
ty = :(typeof.((year, month, day, yearmonth, ...))...)

Error: Couldn't process type annotation
tastr = "(Tuple{A} where Base.IteratorSize(A)::Base.SizeUnknown) where A"
err = AssertionError: Unsupported lb-var-ub format

Error: Couldn't process type annotation
tastr = "(((Tuple{(\$T_nameparam){\$N, \$M, \$FT}} ... \$(T_params...)"
err = AssertionError: Unsupported lb-var-ub format

Error: Couldn't process type annotation
tastr = "Tuple{Union{map((T->beginn #= none:302 =#n ...)...}}"
err = Base.Meta.ParseError("missing comma or ) in argument list")� �

Figure 36: Type annotation processing errors
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