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Figure 1: Our type flow visualization showing type signatures for a subset of R’s base package functions. Function names are
listed at the top followed by the first two argument types. Complete signatures are shown in the full visualization (Fig. 2).

ABSTRACT

Data-driven approaches to programming language design are uncom-
mon. Despite the availability of large code repositories, distilling
semantically-rich information from programs remains difficult. Im-
portant dimensions, like run-time type data, are inscrutable without
the appropriate tools. We contribute a task abstraction and interactive
visualization, TYPEICAL, for programming language designers who
are exploring and analyzing type information from execution traces.
Our approach aids user understanding of function type signatures
across many executions. Insights derived from our visualization are
aimed at informing language design decisions — specifically of a
new gradual type system being developed for the R programming
language. A copy of this paper, along with all the supplemental
material, is available at osf.io/mc6zt

Index Terms: Human-centered computing— Visualization

1 INTRODUCTION

Programming languages commonly evolve by decree. Often, the
language designer decides that a new feature is necessary, or that a
past feature was ill-conceived. Thus, the language moves forward —
forcing its users to adapt to the changes. However, rarely is language
design informed by empirical data on how programmers actually
write software in practice [6].

Thanks to the prevalence of open source code, it is feasible to
collect data on the use of popular programming languages. Vast
quantities of code are publicly available on language-specific pack-
age servers. To inform programming language design, this collected
data needs to be analyzed and interpreted. Programs are complex and
highly structured, so researchers often employ static and dynamic
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analyses to gather information about specific aspects of programs.
Even then, it may be difficult to make sense of the results of these
analyses, especially if the data set is large.

Programming language design, and type system development in
particular, can make use of run-time type signature information. A
type signature describes the argument and return types a particu-
lar function is called with at run time. A fype system provides a
conservative approximation of run-time types. Understanding the
frequency of type signatures in the wild is key for the development
of new gradual type systems, whose adoption depends on integrating
well with existing code. Without data-driven tools, type system
designers are left to guess how their language is used in practice.

Our aim is to eliminate such guesswork by assisting designers
during multiple phases of development. For example, exploratory
analysis can identify unexpected edge cases or weed out language
designs incompatible with existing code. We followed the Design
Study “Lite” methodology [14] over 7 months to help the developers
of a new gradual type system for the R programming language.

The contributions of this ongoing design study are:

* A task abstraction for programming language designers ana-
lyzing run-time type signatures for type system development.

* The design and implementation of TYPEICAL, an interactive
visualization of run-time type signatures that supports: filtering
data down to interpretable subsets; understanding argument
and return types; and comparing type signatures.

e [nitial validation of our system design with a usability study.

TYPEICAL builds on a data set of run-time type information
recorded during the execution of test and example code from the
most widely used libraries in the R ecosystem. Our visual de-
sign links two well-established visualizations, parallel sets [7] and
Treemaps [4] [11], to view and navigate these type traces. While
our design study focuses on R, TYPEICAL should be useful for
analyzing any language where similar data are available.

A copy of this paper, source code, and data are available at
osf.io/mc6zt, and a demo is online at typeical.github.io
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Domain Goals Search Task | Query Task
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Abstract Task Description

Find function Locate Identify

Determine types Browse Identify

Compare signatures Lookup Compare

Discover

Discover

Discover

Finding a function is a locate task, where the target function
is known, but its location within the package hierarchy is not.
Once the desired function is found, a user must be able to
identify relevant data of interest such as call frequency.

Determining types is a browse task, where the target type sig-
nature is unknown, but the location of the function of interest
is known. A user must be able to identify type signature fre-
quencies. For example, to infer if the function is polymorphic
(accepts arguments of multiple different types) or a predicate
(returns a single logical value).

Comparing type signatures is a lookup task where both target
type signatures have already been located. A user must be able
to discern how often a signature is used compared to another,
both within a function and across different functions.

Table 1: Domain goals for programming language designers trying to understand function type signatures at run time. We captured these goals
from interviews and created task abstractions based on Brehmer and Munzner’s multi-level task typology [3].

2 BACKGROUND AND PRIOR WORK

R is a lazy, multi-paradigm, dynamically-typed programming lan-
guage widely used for statistical computing [9]. Unlike statically-
typed languages, R code contains no type annotations and never
passes through a typechecker, so many type-incorrect programs can
be executed. For example, a time-consuming computation may ac-
cidentally contain a call s + 1 where s is a string. This will cause a
run-time error “non-numeric argument to binary operator,” and the
computation will halt — wasting time.

A static type system restricts arguments to the function +, detecting
such errors before a program can begin execution. The goal is to
design a practical static type system; one that allows most correct
programs to compile, but is able to catch all type-incorrect programs
ahead of time. A gradual type system permits integrating static and
dynamic typing [12] [16], and is capable of seamlessly mixing typed
and untyped regions of code. As a dynamically-typed language in
widespread use, R is a good target for a gradual type system.

In statically-typed languages, the type system is usually an insep-
arable part of the language. Since they are designed at the same time,
the type system precedes any code written in the language. Grad-
ual type systems, by contrast, are often designed atop an existing
dynamically-typed language [17]. Many R programs already exist,
so a successful gradual type system must work well with extant code.
Thus, gradual type system designers must first understand existing
language idioms, and then work to accommodate them. Our tool
TYPEICAL assists during the early phases of development, where a
deep understanding of existing language use is necessary.

Code visualization, targeted at programmers attempting to un-
derstand a particular piece of software, has been widely studied.
However, we are not aware of any previous work that applies vi-
sualization techniques for the purpose of programming language
design. A language designer is concerned with understanding broad
trends across the whole language ecosystem and not one specific
program. Existing work, which narrows its analysis to a particular
program, cannot yield the generalizable insights needed for type
system development. Consequently, our system uses an entirely
different set of visualization idioms compared to prior work.

Although the focus of prior work is different, their data are also
derived from run-time execution information. For example, mas-
sive program execution traces are visualized in Bohnet et al. [1] to
improve developer comprehension of large software systems, with
pruning and summarization techniques being applied to reduce trace
size. They focus on call topology, describing the structure of func-

tion invocations, rather than types. Telea et al. [15] also develop a
methodology for displaying call structure. However, they visualize
call graphs of systems in their entirety, rather than individual exe-
cution traces. TYPEICAL has elements of both, investigating the
system as a whole, but doing so via execution traces. Another ap-
proach to call structure visualization is taken by Xie et al. [20], who
employ dynamic call stack information rather than static call graphs.
Besides node-link diagrams showing call graphs, they display exe-
cution times and the mapping of call stack trees to 2D space; this
information is used for anomaly detection. In addition to standard
call graphs, LaToza and Myers [8] adorn nodes and edges with extra
information, allowing the user to gain further understanding of the
system under examination. This includes grouping methods that
come from the same class — a basic form of type data.

3 DATA AND COLLECTION

We used data from Turcotte et al. [18] that consists of traces from
over 760,000 lines of R code and 534,000 lines of native code. This
code was obtained from CRAN, a curated repository of R packages
that is widely used in the community. The data set consists of all
packages with at least 65% code coverage and at least 5 reverse
dependencies (clients using that package). Out of the over 15,000
packages distributed on CRAN, this amounted to 400 packages.

Type traces were recorded by running a dynamic analysis over
the test, example, and vignette code of each package. A vignette is a
form of documentation that weaves together prose and executable
code. A type trace is a list of function type signatures contain-
ing, among other attributes, the function name and types for each
argument and return value. For example, the expression § < 1
would be recorded as the type signature integer — integer —
logical, meaning that the function < took two integer values and
returned a logical value (i.e., a boolean). Types are assigned by
the dynamic analysis and refine their actual run-time types. The
analysis, for example, assigns the scalar tag double to a singleton
vector of double values as R does not have native support for scalars.
Our data set is a table of reduced type traces.

TYPEICAL has been instantiated with R type trace data, but the
architecture is not specific to R at all. Any dynamically-typed lan-
guage, or statically-typed language with run-time type information,
could be instrumented to generate suitable data. As long as the trace
output follows our schema, TYPEICAL will be able to visualize the
data without any modifications.
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Figure 2: TYPEICAL, with the type flow visualization on the left and the filtering panel on the right. Here, the icountn and icount functions
from the iterators package are both selected and displayed simultaneously to support Compare tasks. We see that the icount function
is called with two different type signatures at run time. The function is usually used with the signature double — class. However, a

substantial fraction of the time it is instead used as integer — class.

4 TASK ABSTRACTION

We interviewed the lead developer of a gradual type system for R
(and co-author of this paper) to inventory relevant domain-specific
tasks. Additionally, we sought his and other researchers’ feedback
throughout the creation of TYPEICAL to ensure it adequately met
requirements. These tasks are detailed and abstracted in Table 1.
From our interview, we learned of a common workflow for a type
system designer: based on folklore knowledge about the language,
they hypothesize that a widely-used function can be assigned a static
type signature. To validate this hypothesis, they need to make sure
that this type signature is compatible with uses found in the wild.
They (1) perform the “find function” task and pull information about
the function, (2) “determine types” of the function to learn the run-
time type signatures, and (3) either validate or refute the original
hypothesis. See Section 6.1 for a specific real-world example.

5 DESIGN AND IMPLEMENTATION

Using our abstracted tasks, we designed and developed TYPEICAL:
an interactive web-based visualization of run-time type signatures.
Fig. 2 shows the heart of TYPEICAL — the type flow panel on
the left and the filtering panel on the right. The system uses multiple
coordinated views [19] [10], where signatures shown in the type
flow can be interactively filtered to any selected subset of packages
and functions. By default, the type flow panel shows several of the
most frequent function type signatures in the entire data set. Our R
type trace data, described in Section 3, contains over a million rows.
Aggregation and filtering ensures TYPEICAL remains responsive.

5.1

Our main visualization (Fig. 2, left) is a parallel sets [7] encoding
that shows the type signatures of selected functions as flows. Each
datum can be thought of as a tuple (f,7q,..., Ty, Tr) corresponding
to the function name, argument types, and return type. Each tuple

Types as Flows

component is categorical, and we are interested in visualizing each
signature’s frequency. This is the exact use case for parallel sets.

Flows begin at a node labeling a function, curve across nodes
for each argument type in order, and terminate at the return type.
A width encoding shows how many times a function is called with
that signature in the analysis (Identify tasks). Each flow segment
is filled with a hue-varying categorical color scale, determined by
the return type where the segment ends. To support the Identify
tasks, each node label includes a count of either how many times the
function was invoked (first row) or how often a value of that type
was recorded during analysis (later rows).

Interactivity significantly enhances the usability of parallel sets.
Hovering over a flow highlights its path and fades out all other
functions, as shown in Fig. 2. When displaying many flows simulta-
neously, this highlighting becomes critical for user comprehension.
Additional quantitative information about the flow is supplied on-
demand when the user hovers over it. Clicking a flow will focus
on that function and filter away all others; double-clicking outside
all flows will bring back the previous view. The number of flows
shown is limited to promote legibility, and pagination is used beyond
a threshold; this option is configurable in the SETTINGS tab.

Proper flow layout is a necessary consideration for a legible vi-
sualization [13]. Without additional processing, flow overplotting
can make the visualization impossible to understand. Edge crossing
minimization algorithms have been well-studied; we employ two
existing layout methods to maintain real-time performance. First,
we attempt computing the globally optimal solution, minimizing
the amount of flow crossing by solving a mixed-integer linear pro-
gram [5]. Even for moderately sized graphs this can take too long
to compute. Therefore, the optimal algorithm is terminated after
1 second if it has not finished, and the final layout is computed by
minimizing local crossing between layers. We argue that it is better
to have a reasonable layout quickly, rather than incur significant
delay waiting for a perfect layout.



5.2 Hierarchical Package Visualization

The filtering panel of TYPEICAL (Fig. 2, right) contains three el-
ements: a search bar and two flat Treemaps, one for packages and
one for functions. These components support both the Locate and
Browse search tasks in Table 1 for functions and packages. The
search bar uses autocomplete and allows one to Locate a function
among the thousands available. Alternatively, the Treemap views
are more effective to Browse all available packages and functions.

Treemaps are often used for displaying hierarchical data [11],
but in TYPEICAL they have a flat structure as packages in our data
are not deeply nested. Many programming languages, like Java,
contain deep namespace hierarchies in their package ecosystems. A
more hierarchical Treemap would be appropriate in such cases, and
TYPEICAL could be easily modified accordingly.

The Treemap area encodings convey the log-scaled frequency of
calls to the associated function (Function Treemap) or all functions
defined in that package (Package Treemap). Log-scaling, combined
with pagination, keep nodes of the Treemaps and their labels legible,
even when absolute frequency differences are significant. This is
appropriate given our focus on supporting Browse tasks. We use the
Squarified Treemap algorithm by Bruls et al. [4] to avoid rectangles
with extreme aspect ratios that would make area perception less
accurate and are harder to label.

All three filtering components are linked. Selection in the Pack-
ages Treemap filters the Functions Treemap to only functions defined
in those packages; additionally, the type flow visualization updates
to show the most frequent function type signatures for those pack-
ages. Likewise, selection in the Functions Treemap or search bar
filters the type flow visualization to only those functions’ signatures.

By default, TYPEICAL allows only one function or package to
be selected at a time. An option in the SETTINGS tab allows mul-
tiple function selection. In the example from Fig. 2, the icountn
and icount functions from the iterators package are both se-
lected. These functions are rendered simultaneously in the type flow
visualization, allowing the user to Compare them.

5.3 Technical Details

Since the amount of data a user may query is large (see Section 3),
TYPEICAL is split into frontend and backend components. Data
is stored in a SQLite database that has been indexed to achieve
lookups as fast as possible. A Node.js server provides database
access via a REST API to the client-side interactive visualization
code. The client is written using D3 [2] and Vue, and is responsive to
a variety of browser dimensions. This architecture avoids excessive
memory consumption and speeds up load and query times by only
transferring the required subset of data. Edge crossing minimization
is calculated using web workers to allow early termination and avoid
blocking the main browser thread. While we have chosen a specific
implementation strategy, the design requirements do not mandate
this software stack. Any visualization framework that supports
Treemaps, parallel sets, and rich interactivity, should suffice.

6 EVALUATION

In accordance with the design study “lite” methodology [14], we
conducted a small-scale qualitative usability study to validate our
system design. Our n = 18 participants were Computer Science M.S.
and Ph.D. students at our institution.

Many respondents had some trouble interpreting the visualization
or at least commented that the learning curve was steep. Given
that the domain is niche and the flow-based idiom for visualizing
signatures is novel, this was not unexpected. To alleviate some of this
confusion, we incorporated elements that give explicit explanations
for different components. These appear as question mark icons @
that, upon hovering, give a complete description of the corresponding
component. For more details, we also provide an ABOUT page with
step-by-step instructions and a demo video.

6.1 A Preliminary Case Study

The R type system designers are considering adding more sophisti-
cated class and object types to their type system — hypothesizing
that one umbrella type for all classes is inadequate. To get a better
idea for this, they are interested in how classes flow through type
traces. Specifically, how does the input class affect the output class?

Consider dplyr’s select function that accepts an R data frame,
a number of column names, and returns the specified columns. At
first glance, the type is uninteresting, with a single type trace (class
— -+ — class) occurring about 70 times. With the “detailed data”
setting enabled, however, the type becomes much more interesting;
it reveals five different classes for the first argument, matching up
perfectly with the five different classes for the return type. We see
that select “preserves” the class of its first argument — passed an
object of class A, it always returns an object of class A. This insight
led the type system designers to conclude that richer class types
would be useful to programmers.

7 DiscussION

Designed with a specific use case in mind, TYPEICAL suffers from
some shortcomings and does not fully address the entire range of
tasks a language designer may need to perform.

In particular, TYPEICAL has limited support for exploring type
information at differing granularities. R has a range of data types
with dimensionality information that we compress into a simpler
type. Reducing the number of types can make the visualization more
understandable, at the expense of losing precision in type informa-
tion. At the moment, TYPEICAL supports interactive switching
between fully compressed types and types with enhanced class and
list information (e.g. list<logical>). Ideally, a user would be able
to tune the level of granularity in multiple dimensions.

Filtering is a central mechanism of our system, but it also comes
at a cost. If one has a specific function or several functions in mind,
then TYPEICAL provides a useful local view of that information. It
does not support, however, any kind of global view of type informa-
tion across a large number of functions. When the amount of flows
or nodes becomes too great, the visualization will start paginating,
making comparisons across all flows substantially more difficult.
Aggregation and summarization would be key to making a global
view of the data feasible, but that remains future work.

8 CONCLUSION

We have presented a task abstraction and interactive visualization for
analyzing and exploring run-time type information. Our tool, TYPE-
ICAL, was instantiated with a massive data set of type traces from a
corpus of popular R packages. The system is aimed at elucidating
how R programmers use the language in the field. Specifically, the
data and visualization will be used to inform the design of a future
gradual type system for R. However, TYPEICAL is not tied to the R
ecosystem and is suitable to use for any language that supports run-
time type information. The visualization could yield insights useful
for purposes beyond gradual typing and what we have considered.
We hope that future programming language designers will collect
and use empirical data about their languages more extensively. Such
data could be used to make informed decisions about design, where
the legacy cost of making a mistake is high. Visualization will be un-
avoidable in these scenarios as semantically-meaningful information
about programs is rich in structure. Generic, canned visualizations
will not be sufficient. TYPEICAL is a first step in this direction.
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