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Abstract. Earlier comparative studies of language support for generic
programming (GP) have shown that mainstream object-oriented (OO)
languages such as C# and Java provide weaker support for GP as com-
pared with functional languages such as Haskell or SML. But many new
object-oriented languages have appeared in recent years. Have they im-
proved the support for generic programming? And if not, is there a reason
why OO languages yield to functional ones in this respect? In this paper
we analyse language constructs for GP in seven modern object-oriented
languages. We demonstrate that all of these languages follow the same
approach to constraining type parameters, which has a number of in-
evitable problems. However, those problems are successfully lifted with
the use of the another approach. Several language extensions that adopt
this approach and allow to improve GP in OO languages are consid-
ered. We analyse the dependencies between different language features,
discuss the features’ support using both approaches, and propose which
approach is more expressive.

Keywords: generic programming, object-oriented languages, program-
ming language design, type parameters, constraints, interfaces, concepts,
type classes, Concept pattern, multi-type constraints, multiple models,
C#, Java, Scala, Ceylon, Kotlin, Rust, Swift, Haskell

1 Introduction

Most of the modern programming languages provide language support for generic
programming (GP) [13]. As was shown in earlier comparative studies [4,7,8,14],
some languages do it better than others. For example, Haskell is generally con-
sidered to be one of the best languages for generic programming [4, 7], whereas
mainstream object-oriented (OO) languages such as C# and Java are much less
expressive and have many drawbacks [1,3]. But several new object-oriented lan-
guages have appeared in recent years, for instance, Rust, Swift, Kotlin. Have
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interface IPrintable { string Print (); }

void PrintArr(IPrintable [] xs)
{ foreach (var x in xs) Console.WriteLine("{0}\n", x.Print ()); }

string InParens <T>(T x) where T : IPrintable
{ return "(" + x.Print() + ")"; }

Fig. 1. An ambiguous role of C# interfaces

they improved the support for generic programming? To answer this question,
we analyse seven modern OO languages with respect to their support for GP.
It turns out that all of these languages follow the same approach to constrain-
ing type parameters, which we call the “Constraints-are-Types” approach. This
approach is specific to object-oriented languages and has several inevitable lim-
itations. The approach and its drawbacks are discussed in Sec. 2.

Sec. 3 provides a survey of the existing extensions [2, 3, 17, 24, 25] for object-
oriented languages that address the limitations of OO languages [1] and improve
the support for generic programming: all of them add new language constructs
for constraining type parameters. We call the respective approach “Constraints-
are-Not-Types”. The advantages and shortcomings of this approach as compared
with the basic one used in OO languages are discussed; yet we outline the design
issues that need further investigation.

In conclusion, we argue that the “Constraints-are-Not-Types” approach is
more expressive than the “Constraints-are-Types” one. Table 1 is a modified
version of the well-known table [7, 8] showing the levels of language support
for generic programming. It provides information on all of the object-oriented
languages and extensions considered, introduces some new features, and demon-
strates the relations between them.

2 Object-Oriented Approach to Constraining
Type Parameters

We have explored language constructs for generic programming in seven modern
object-oriented languages: C#, Java 8, Ceylon, Kotlin, Scala, Rust, Swift. As
we will see, all of these languages adopt the same approach to constraining
type parameters, which we call the “Constraints-are-Types” approach [3]. In this
approach, interface-like constructs, which are normally used as types in object-
oriented programming, are also used to constrain type parameters. By “interface-
like constructs” we mean, in particular, interfaces in C#, Java, Ceylon, and
Kotlin, traits in Scala and Rust, protocols in Swift. Fig. 1 shows a corresponding
example in C#: IPrintable is an interface; it acts as a type in the array parameter
xs in the PrintArr function, i. e. xs is an array of arbitrary values convertible
to string, whereas in the InParens<T> function IPrintable is used to constrain
the type parameter T. This example is not of particular interest, but it shows
a common pattern of how constructs such as interfaces are used for generic
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interface Equatable <T> {
fun equal (other: T) : Boolean
fun notEqual(other: T): Boolean { return !this.equal(other) }

}
class Ident (name : String) : Equatable <Ident > {

val idname = name.toUpperCase ()
override fun equal (other:Ident ): Boolean { return idname == other.idname }

}
fun <T : Equatable <T>> contains(vs : Array <T>, x : T): Boolean
{ for (v in vs) i f (v.equal(x)) return true;

return false ; }

Fig. 2. Interfaces and constraints in Kotlin

interface Comparable <Other > of Other
given Other satis f ies Comparable <Other > {

formal Integer compareTo(Other other);
Integer reverseCompareTo(Other other) { return other.compareTo(this ); } }

Fig. 3. The use of “self type” in Ceylon interfaces

programming in OO languages. Sec. 2.1 provides a survey of similar constructs
for GP in the modern object-oriented languages mentioned above. The main
problems and drawbacks of the approach are discussed in Sec. 2.2.

2.1 Language Constructs for Constraining Type Parameters
in Object-Oriented Languages

Interfaces in C#, Java and Kotlin. A classical interface describes methods
and properties of a type that implements/extends the interface. In C# and Java 7
only signatures of instance methods are allowed inside the interface. Kotlin and
Java 8 also support default method implementations. This is a useful feature
for generic programming. For instance, one can define an interface for equality
comparison that provides a default implementation for the inequality operation.
Fig. 2 demonstrates corresponding Kotlin definitions: the Ident class implements
the interface Equatable<Ident> that has two methods, equal and notEqual; as
long as notEqual has a default implementation in the interface, there is no need
to implement it in the Ident class.

Note that the Equatable<T> interface is generic: it takes the T type param-
eter that “pretends” to be a type implementing the interface, and this is in-
deed the case for the function contains<T> due to the “recursive” constraint
T : Equatable<T>. The type parameter T is needed to solve the so-called binary
method problem [5]: the equal method of the interface is expected to operate on
two values of the same type (thus, equal is a “binary method”), with the first
value being a receiver of equal, and the second value being a parameter of equal.
T is an actual type of the other parameter, and it is supposed to be a type of
the receiver.



4 Julia Belyakova

struct Point { x: i32 , y: i32 , }
...
impl Point {

fn moveOn (& self , dx: i32 , dy: i32) -> Point
{ Point {x: sel f .x + dx, y: sel f .y + dy } }}

...
impl Point {

fn reflect (& sel f ) -> Point { Point {x: - sel f .x, y: - sel f .y} }}
...
let p1 = Point {x: 4, y: 3};
let p2 = p1.moveOn(1, 1); let p3 = p1.reflect ();

Fig. 4. Point struct and its methods in Rust

Interfaces in Ceylon. Ceylon interfaces are much similar to the Java 8 and
Kotlin ones, but the Ceylon language also allows a declaration of a type pa-
rameter as a self type. An example is shown in Fig. 3. In the definition of the
Comparable<Other> interface the declaration “of Other” explicitly requires Other

to be a self type of the interface, i. e. a type that implements this interface. Be-
cause of this the reverseCompareTo method can be defined: the other and this

values have the type Other, with the Other implementing Comparable<Other>, so
the call other.compareTo(this) is perfectly legal. Without “of Other” the Other

type can only be supposed to be a type of this, but this cannot be verified by
a compiler, so the reverseCompareTo method cannot be written in Java 8 and
Kotlin.

Scala Traits. Similarly to advanced interfaces in Java 8, Ceylon, and Kotlin,
Scala traits [14,15] support default method implementations. They can also have
abstract type members, which, in particular, can be used as associated types [11,
16]. Associated types are types that are logically related to some entity. For
instance, types of edges and vertices are associated types of a graph.

Just as in C#/Java/Ceylon/Kotlin, type parameters (and abstract types) in
Scala can be constrained with traits and supertypes (upper bounds): the latter
constraints are called subtype constraints. But, moreover, they can be constrained
with subtypes (lower bounds), which are called supertype constraints. None of
the languages we discussed so far support supertype constraints nor associated
types. Another important Scala feature, implicits [15], will be mentioned later in
Par. 2.2 with respect to the Concept design pattern.

Rust Traits. The Rust language is quite different from other object-oriented
languages. There is no traditional class construct in Rust, but instead it suggests
structs that store the data, and separate method implementations for structs. An
example is shown in Fig. 41: two impl Point blocks define method implementa-
tions for the Point struct. If a function takes the &self2 argument (as moveOn), it

1 Some details were omitted for simplicity. To make the code correct, one has to add
#[derive(Debug,Copy,Clone)] before the Point definition.

2 The “&” symbol means that an argument is passed by reference.
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trait Equatable { fn equal(& self , that: &Self) -> bool;
fn not_equal (& self , that: &Self) -> bool { ! sel f .equal(that) } }

trait Printable { fn print(& sel f ); }
...
impl Equatable for i32 {

fn equal (& self , that: &i32) -> bool { * sel f == *that } }
...
struct Pair <S, T>{ first: S, second: T }
...
impl <S : Equatable , T : Equatable > Equatable for Pair <S, T> {

fn equal (& self , that: &Pair <S, T>) -> bool
{ sel f .first.equal(&that.first) && sel f .second.equal (&that.second) } }

Fig. 5. An example of using Rust traits

is treated as a method. There can be any number of implementation blocks, yet
they can be defined at any point after the struct declaration (even in a differ-
ent module). This gives a huge advantage with respect to generic programming:
any struct can be retroactively adapted to satisfy constraints. “Retroactively”
means “later, after the point of definition”. Constraints in Rust are expressed
using traits. A trait defines which methods have to be implemented by a type sim-
ilarly to Scala traits, Java 8 interfaces, and others. Traits can have default method
implementations and associated types; besides that, a self type of the trait is di-
rectly available and can be used in method definitions. Fig. 53 demonstrates an
example: the Equatable trait defining equality and inequality operations. Note
how support for self type solves the binary method problem (here equal is a
binary method): there is no need in extra type parameter that “pretends” to be
a self type, because the self type Self is directly available.

Method implementations in Rust can be probably thought of similarly to
.NET “extension methods”. But in contrast to .NET4, types in Rust also can
retroactively implement traits in impl blocks as shown in Fig. 5: Equatable is
implemented by i32 and Pair<S, T>. The latter definition also demonstrates a
so-called type-conditional implementation: pairs are equality comparable only if
their elements are equality comparable. The constraint <S : Equatable... is a
shorthand, it can be declared in a where section as well.

There is no struct inheritance and subtype polymorphism in Rust. Neverthe-
less, traits can be used as types, and due to this, a dynamic dispatch is provided.
This feature is called trait objects in Rust. Suppose i32 and f64 implement the
Printable trait from Fig. 5. Then the following code demonstrates creating and
use of a polymorphic collection of values of the &Printable type (the type of the
polyVec elements is a reference type):

let pr1 = 3; let pr2 = 4.5; let pr3 = -10;
let polyVec: Vec <&Printable > = vec![&pr1 , &pr2 , &pr3];

3 Some details were omitted for simplicity. The following declaration is to be provided
to make the code correct: #[derive(Copy, Clone)] before the definition struct

Pair<S : Copy, T : Copy>. Yet the type parameters of the impl for pair must be
constrained with Copy+Equatable.

4 Similarly to .NET, Kotlin supports extending classes with methods and properties,
but interface implementation in extensions is not allowed.
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protocol Equatable { func equal(that: Self) -> Bool; }
extension Equatable { func notEqual(that: Self) -> Bool
{ return ! sel f .equal(that) }}
func contains <T : Equatable > (values: [T], x:T) -> Bool { ... }

protocol Printable { func print (); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allItemsMatch <C1: Container , C2: Container

where C1.ItemTy == C2.ItemTy , C1.ItemTy: Equatable > ...

Fig. 6. Protocols and their use in Swift

interface ITerm <Tm> { IEnumerable <Tm > Subterms (); ... }

interface IEquation <Tm , Eqtn , Subst > where Tm : ITerm <Tm >
where Eqtn : IEquation <Tm, Eqtn , Subst >
where Subst : ISubstitution <Tm , Eqtn , Subst >

{ Subst Solve ();
IEnumerable <Eqtn > Split (); ... }

interface ISubstitution <Tm , Eqtn , Subst > where Tm : ITerm <Tm >
where Eqtn : IEquation <Tm, Eqtn , Subst >
where Subst : ISubstitution <Tm , Eqtn , Subst >

{ Tm SubstituteTm(Tm);
IEnumerable <Eqtn > SubstituteEq (IEnumerable <Eqtn >); ... }

Fig. 7. The C# interfaces for the Unification algorithm

for v in polyVec { v.print (); }

Swift Protocols. Swift is a more conventional OO language than Rust: it has
classes, inheritance, and subtype polymorphism. Classes can be extended with
new methods using extensions that are quite similar to Rust method implemen-
tations. Instead of interfaces and traits Swift provides protocols. They cannot be
generic but support associated types and same-type constraints, default method
implementations through protocol extensions, and explicit access to a self type;
due to the mechanism of extensions, types can retroactively adopt protocols.
Fig. 6 illustrates some examples: the Equatable protocol extended with a default
implementation for notEqual (pay attention to the use of the Self type); the
contains<T> generic function with a protocol constraint on the type parameter
T; an extension of the type Int that enables its conformance to the Printable pro-
tocol; the Container protocol with the associated type ItemTy; the allItemsMatch

generic function with the same-type constraint on types of elements of two con-
tainers, C1 and C2.

2.2 Drawbacks of the “Constraints-are-Types” Approach

The Problem of Multi-Type Constraints. Constructs such as interfaces or
traits, which are used both as types in object-oriented code and constraints on
type parameters in generic code, describe an interface of a single type. And this
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has inevitable consequence: multi-type constraints (constraints on several types)
cannot be expressed naturally. Consider a generic unification algorithm [12]: it
takes a set of equations between terms (symbolic expressions), and returns the
most general substitution which solves the equations. So the algorithm oper-
ates on three kinds of data: terms, equations, substitutions. A signature of the
algorithm might be as follows:

Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)

But a bunch of functions have to be provided to implement the algorithm:
Subterms : Tm → IEnumerable<Tm>, Solve : Eqtn → Subst,
SubstituteTm : Subst × Tm → Tm,
SubstituteEq : Subst × IEnumerable<Eqtn> → IEnumarable<Eqtn>,
and some others. All these functions are needed for unification at once, hence it
would be convenient to have a single constraint that relates all the type param-
eters and provides the functions required:

Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)
where <single constraint >

But in the languages considered in the previous section the only thing one can do5

is to define three different interfaces for terms, equations, and substitution, and
then separately constrain every type parameter of the Unify<> with a respective
interface. Fig. 7 shows the C# interface definitions. To set up a relation between
mutually dependent interfaces, several type parameters are used: Tm for terms,
Eqtn for equations, and Subst for substitution. The parameters are repeatedly
constrained with the appropriate interfaces in every interface definition. Those
constraints are to be stated in a signature of the unification algorithm as well:

Subst Unify <Tm, Eqtn , Subst > (IEnumerable <Eqtn >)
where Tm : ITerm <Tm >
where Eqtn : IEquation <Tm, Eqtn , Subst >
where Subst : ISubstitution <Tm, Eqtn , Subst >

There is one more thing to notice here — interfaces are used in both roles in the
same piece of code: the IEnumerable<Eqtn> interface is used as a type, whereas
other interfaces in the where sections are used as constraints. So the semantics
of the interface construct is ambiguous.

The Lack of Language Support for Multiple Models. For simplicity, in
this part of the paper we call “constraint” any language construct that is used
to describe constraints, while the way in which types satisfy the constraints we
call “model”. All of the object-oriented languages considered earlier allow having
only one, unique model of a constraint for the given set of types. And indeed this
makes sense for the languages where “Constraints-are-Types” philosophy works,
because it is not clear what to do with types that could implement interfaces (or
any other similar constructs) in several ways. But how does this affect generic
programming? It turns out that sometimes it is desirable to have multiple models

5 The Concept design pattern can also be used, but it has its own drawbacks. We will
discuss concept pattern later, in Par. 2.2.
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// Type Parameter Constraints
interface IComparable <T> { int CompareTo(T other); }
void Sort <T>(T[] values) where T : IComparable <T> { ... }
class SortedSet <T> where T : IComparable <T> { ... }

// Concept Pattern
interface IComparer <T> { int Compare(T x, T y); }
void Sort <T>(T[] values , IComparer <T> cmp) { ... }
class SortedSet <T> { private IComparer <T> cmp; ...

public SortedSet(IComparer <T> cmp) { ... } ... }

Fig. 8. The use of the Concept design pattern in C#

of a constraint for the same set of types. For instance, one could imagine sets
of strings with case-sensitive and case-insensitive equality comparison; another
common example is the use of different orderings on numbers, yet different graph
implementations, and so on. Thus, with respect to generic programming, the
absence of multiple models is rather a problem than a benefit. Without extending
the language the problem of multiple models can be solved in two ways:

1. Using the Adapter pattern. If one wants the type Foo to implement the
interface IEquatable<Foo> in a different way, an adapter of Foo, the Foo1

that implements IEquatable<Foo1> can be created. This adapter then can
be used instead of Foo whenever the Foo1-style comparison is required. An
obvious shortcoming of this approach is the need to repeatedly wrap and
unwrap Foo values; in addition, code becomes cumbersome.

2. Using the Concept pattern, which is considered below.

Concept Pattern. The Concept design pattern [15] eliminates two problems:

1. First, it enables retroactive modeling of constraints, which is not supported
in languages such as C#, Java, Ceylon, Kotlin, or Scala.

2. Second, it allows defining multiple models of a constraint for the same set of
types.

The idea of the Concept pattern is as follows: instead of constraining type param-
eters, generic functions and classes take extra arguments that provide a required
functionality — “concepts”. Fig. 8 shows an example: in the case of the Concept
pattern the constraint T : IComparable<T> is replaced with an extra argument
of the type IComparer<T>. The IComparer<T> interface represents a concept of
comparing: it describes an interface of an object that can compare values of the
type T. As long as one can define several classes implementing the same interface,
different “models” of the IComparer<T> “concept” can be passed into Sort<T> and
SortedSet<T>.

This pattern is widely used in generic libraries of mainstream object-oriented
languages such as C# and Java; it is also used in Scala. Due to implicits [14,
15], the use of the Concept pattern in Scala is a bit easier: in most cases an
appropriate “model” can be found by a compiler implicitly, so there is no need
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to explicitly pass it at a call site6. Nevertheless, the pattern has two substantial
drawbacks. First of all, it brings run-time overhead, because every object of a
generic class with constraints has at least one extra field for the “concept”, while
generic functions with constraints take at least one extra argument. The second
drawback, which we call models-inconsistency, is less obvious but may lead to
very subtle errors. Suppose we have s1 of the type HashSet<String> and s2 of
the same type, provided that s1 uses case-sensitive equality comparison, s2 —
the case-insensitive one. Thus, s1 and s2 use different, inconsistent models of
comparison. Now consider the following function:

static HashSet <T> GetUnion <T>(HashSet <T> a, HashSet <T> b)
{ var us = new HashSet <T>(a, a.Comparer ); us.UnionWith(b); return us; }

Unexpectedly, the result of GetUnion(s1, s2) could differ from the result of
GetUnion(s2, s1). Despite the fact that s1 and s2 have the same type, they use
different comparators, so the result depends on which comparator was chosen to
build the union. Comparators are run-time objects, so the models-consistency
cannot be checked at compile time.

3 The “Constraints-are-Not-Types” Approach
to Constraining Type Parameters

In contrast to object-oriented languages discussed in Sec. 2, type classes [10] in
the Haskell language are not used as types, they are used as constraints only.
Inspired by the design of type classes, several language extensions for C# and
Java have been developed. For defining constraints all these extensions suggest
new language constructs that have no self types and cannot be used as types.
They describe requirements on type parameters in an external way; therefore,
retroactive constraints satisfaction (retroactive modeling) is automatically pro-
vided. Besides retroactive modeling, an integral advantage of such kind of con-
structs is that multi-type constraints can be easily and naturally expressed using
them; yet there is no semantic ambiguity which arises when the same construct,
such as a C# interface, is used both as a type and constraint, as in the example
below:

void Sort <T>( ICollection <T>) where T : IComparable <T>;

Here ICollection<T> and IComparable<T> are generic interfaces, but the former
is used as a type whereas the latter is used as constraint.

3.1 Language Extensions for Object-Oriented Languages

JavaGI Generalized Interfaces. JavaGI [24] provides multi-headed generalized

interfaces that adopt several features from Haskell type classes [23] and describe
interfaces of several types. There is no self type in such interface, it cannot be

6 Scala is often blamed for its complex rules of implicits resolution: sometimes it is
not clear which implicit object is to be used.



10 Julia Belyakova

interface UNIFY [Tm, Eqtn , Subst] {
receiver Tm { IEnumerable <Tm > Subterms (); ... }
receiver Eqtn { IEnumerable <Eqtn > Split (); ... }
receiver Subst { Tm SubstituteTm(Tm); ... }}

Subst Unify <Tm, Eqtn , Subst >(Enumerable <Eqtn >)
where [Tm , Eqtn , Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGI

used as a type. An example of multi-headed interface is shown in Fig. 9: the
UNIFY interface contains all the functions required by the unification algorithm
considered in Sec. 2.2; the requirements on three types (term, equation, substitu-
tion) are defined at once in a single interface. Note how succinct is this definition
as compared with the one in Fig. 7.

Language G and C++ Concepts. Concept as an explicit language construct
for defining constraints on type parameters was initially introduced in 2003 [19].
Several designs have been developed since that time [6, 20, 21]; in the large, the
expressive power of concepts is rather close to the Haskell type classes [4]. Con-
cepts were designed to solve the problems of unconstrained C++ templates [1,18].
A new version of concepts, Concepts Lite (C++1z) [22], is under way now. The
language G declared as “a language for generic programming” [17] also provides
concepts that are very similar to the C++0x concepts. Similarly to a type class,
a concept defines a set of requirements on one or more type parameters. It can
contain function signatures that may be accompanied with default implemen-
tations, associated types, nested concept-requirements on associated types, and
same-type constraints. A concept can refine one or more concepts, it means that
the refining concept includes all the requirements from the refined concepts.
Refinement is very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called concept-based
overloading is supported: one can define several versions of an algorithm/class
that have different constraints, and then at compile time the most specialized
version is chosen for the given instance. The C++ advance algorithm for iterators
is a classic example of concept-based overloading application.

It is said that a type (or a set of types) satisfies a concept if an appro-
priate model of the concept is defined for this type (types). Model definitions
are independent from type definitions, so the modeling relation is established
retroactively ; models can be generic and type-conditional.

C# with Concepts. In the C#cpt project [3] (C# with concepts) concept mech-
anism integrates with subtyping: type parameters and associated types can be
constrained with supertypes (as in basic C#) and also with subtypes (as in Scala).
In contrast to all of the languages we discussed earlier, C#cpt allows multiple
models of a concept in the same scope. Some examples are shown in Fig. 10: the
CEquatable[T] concept with the Equal signature and a default implementation
of NotEqual, the generic interface ISet<T> with concept-requirement on the type
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concept CEquatable[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

interface ISet <T> where CEquatible[T] { ... }

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

bool Contains <T>( IEnumerable <T> values , T x)
where CEquatable[T] using CEq {... i f (cEq.Equal (...) ...}

Fig. 10. Concepts and models in C#cpt

constraint Eq[T] { boolean T.equals(T other ); }
constraint GraphLike[V, E] { V E.source (); ... }

interface Set[T where Eq[T]] { ... }

model CIEq for Eq[String] { ... } // case - insensitive model

model DualGraph[V,E] for GraphLike[V,E] where GraphLike[V,E] g
{ V E.source () { return this .(g.sink )(); } ... }

Fig. 11. Constraints and models in Genus

parameter T, and two models of CEquatable[] for the type String — for case-
sensitive and case-insensitive equality comparison. The first model is marked as
a default model7: it means that this model is used if a model is not specified at
the point of instantiation. For instance, in the following code StringEqCaseS is
used to test equality of strings in s1.

ISet <String > s1 = ...;
ISet <String >[using StringEqCaseIS] s2 = ...;
s1 = s2; // Static ERROR , s1 and s2 have different types

Note that s1 and s2 have different types because they use different models of
CEquatible[String]. Models are compile-time artefacts, so the models-consistency
is checked at compile time. One more interesting thing about C#cpt: concept-
requirements can be named. In the Contains<T> function (Fig. 10) the name cEq is
given to the requirement on T; this name is used later in the body of Contains<T>
to access the Equal function of the concept. It is also worth mention that the
interface IEnumerable<T> is used as a type along with the concept CEquatable[T]

being used as a constraint; thus, the role of interfaces is not ambiguous any more,
interfaces and concepts are independently used for different purposes.

Constraints in Genus. Like G concepts and Haskell type classes, constraints in
Genus [25] (an extension for Java) are used as constraints only. Fig. 11 demon-
strates some examples: the Eq[T] constraint, which is used to constrain the
T in the Set[T] interface; the model of Eq[String] for case-insensitive equal-
ity comparison; the multi-parameter constraint GraphLike[V, E], and the type-

7 The default model can be generated automatically for a type if the type conforms
to a concept, i. e. it provides methods required by the concept.
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conditional generic model DualGraph[V,E]. Methods in Genus classes/interfaces
can impose additional constraints:

interface List[E] { boolean remove(E e) where Eq[E]; ... }

Here the List[] interface can be instantiated by any type, but the remove method
can be used only if the type E of elements satisfies the Eq[E] constraint. This
feature is called model genericity.

Just as C#cpt, Genus supports multiple models and automatic generation
of the natural model, which is the same thing as the default model in C#cpt.
Models-consistency can also be checked at compile time. In Genus this feature
is called model-dependent types. As well as in C#cpt, constraint-requirements
in Genus can be named; the example is shown in Fig. 11: g is a name of the
GraphLike[V,E] constraint required by the DualGraph[V,E] model.

4 Conclusion and Future Work
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Retroactive type extension #  # # #    # # # #
Retroactive modeling  A A A # A       
Type conditional models  # # # # #  #     

Static methods  𝑎 #  #       𝑎  𝑎  𝑎

Default method implementation  #       G#   #

Associated types  # #  # #   #   #
Constraints on associated types G# − −  − −   −   −
Same-type constraints G# − −  − −   −   −

Subtype constraints −      −  # #  #
Supertype constraints − # #  # # − # # #  #

Constraints refinement             
Concept-based overloading # # # # # #  # # G#𝑏 # #

Multiple models G#𝑐 A A A A A # # # G#𝑑   
Models-consistency (model-dependent types) −𝑒 # # # # # −𝑒 −𝑒 −𝑒 −𝑒   
Model genericity − A A A A A  # # # #  

aConstraints constructs have no self types, therefore, any function member of a constraint can be
treated as static function.
bC++0x concepts, in contrast to G concepts, provide full support for concept-based overloading.
cPartially supported with OverlappingInstances extension.
dG supports lexically-scoped models but not really multiple models.
eIf multiple models are not supported, the notion of model-dependent types does not make sense.

Table 1. The levels of support for generic programming in OO languages
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Taking into consideration what we have found out in Sec. 2 and Sec. 3, we
draw a conclusion that there are merely two language features concerning generic
programming that cannot be incorporated in an object-oriented language to-
gether :

1. the use of a construct both as a type and constraint;
2. natural support for multi-type constraints.

Using the “Constraints-are-Types” approach, the first feature can be supported,
but not the second; using the “Constraints-are-Not-Types” approach, vice versa.
Can we choose one feature that is more important? The answer is yes. It was
shown in the study [9] that in practice interfaces that are used as constraints
(such as IComparable<T> in C# or Comparable<X> in Java) are almost never used
as types: authors had checked about 14 millions lines of Java code and found
only one such example, which was even rewritten and eliminated. At the same
time, multi-type constraints, which can be so naturally expressed under the
“Constraints-are-Not-Types” approach, have rather awkward and cumbersome
representation in the “Constraints-are-Types” approach. Furthermore, the Con-
cept design pattern used in OO languages to provide the support for multiple
models has serious pitfalls, whereas with the “Constraints-are-Not-Types” ap-
proach models-consistency can be ensured at compile-time if multiple models
are allowed. All other language facilities we discussed could be supported under
any approach. Therefore, we claim that the “Constraints-are-Not-Types” ap-
proach is preferable. Without sacrificing OO features, object-oriented languages
can be extended with new language constructs for constraining type parameters
to improve the support for generic programming. Nevertheless, further study
is needed to identify an effective design and implementation of such extension.
The existing designs that support multiple models, C#cpt and Genus, have at
least one essential shortcoming: constraints on type parameters are declared in
“predicate-style” rather than “parameter-style”. In Haskell, G, C#, Java, Rust,
and many other languages, where only one model of a constraint is allowed for
the given set of types, constraints on type parameters are indeed predicates:
types either satisfy the constraint (if they have a model that is unique) or not.
But in Genus and C#cpt constraints are not predicates, they are actually pa-
rameters, as long as different models of constraints can be used. Unfortunately,
the “predicate-style” syntax does not correspond to this semantics. It misleads
a programmer and makes it more difficult to write and call generic code. Fea-
tures such as multiple dynamic dispatch, concept variance, and typing rules in
presence of concept parameters are also to be investigated.

Table 1 provides a summary on comparison of the OO languages and lan-
guage extensions considered: each row corresponds to one property important
for generic programming; each column shows levels of support of the proper-
ties in one language. Black circle  indicates full support of a property, G# —
partial support, # means that a property is not supported at language level,
A means that a property is emulated using the Concept pattern, and the “−”
sign indicates that a property is not applicable to a language. Related properties
are grouped within horizontal lines; some of them, such as “using constraints as
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types” and “natural language support for multi-type constraints” are mutually
exclusive. The major features analysed in the paper are highlighted in bold. The
purpose of this table is to show dependencies between different properties and to
graphically demonstrate that the “Constraints-are-Not-Types” approach is more
powerful than the “Constraints-are-Types” one. There are some features that
can be expressed under any approach, such as static methods, default method
implementations, associated types [11], and even type-conditional models.
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