
Decidable Subtyping of Existential Types for Julia

JULIA BELYAKOVA, Purdue University, USA
BENJAMIN CHUNG, JuliaHub, USA
ROSS TATE, Independent Consultant, USA
JAN VITEK, Northeastern University, USA and Charles University, Czechia

Julia is a modern scientific-computing language that relies on multiple dispatch to implement generic libraries.
While the language does not have a static type system, method declarations are decorated with expressive
type annotations to determine when they are applicable. To find applicable methods, the implementation
uses subtyping at run-time. We show that Julia’s subtyping is undecidable, and we propose a restriction on
types to recover decidability by stratifying types into method signatures over value types—where the former
can freely use bounded existential types but the latter are restricted to use-site variance. A corpus analysis
suggests that nearly all Julia programs written in practice already conform to this restriction.

CCS Concepts: • Theory of computation→ Type structures; • Software and its engineering→ Data types
and structures; Semantics; Just-in-time compilers; Language features.

Additional Key Words and Phrases: Decidability, Subtyping, Julia

ACM Reference Format:
Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek. 2024. Decidable Subtyping of Existential Types
for Julia. Proc. ACM Program. Lang. 8, PLDI, Article 191 (June 2024), 24 pages. https://doi.org/10.1145/3656421

1 INTRODUCTION
Julia is a scientific-computing language carefully designed so that an implementation can generate
efficient code for performance-critical abstractions. The central abstraction mechanism offered
by the language is multiple dispatch with an expressive type-annotation language and a complex
subtype relation. Multiple dispatch is a mechanism dating back to Lisp [Bobrow et al. 1986], which
allows generic functions to have multiple implementations, calledmethods, tailored to different argu-
ment types. The following code snippet illustrates the expressive power of Julia’s type-annotation
language, in this case defining the binary “-” operator for various types:� �

- (x::BigInt, y::BigInt) = ...
- (x::T, y::T) where T <: Union{Int16, Int32} = ...
- (m::Missing, n::Number) = ...
- (A::AbstractArray{T,N}) where {T,N} = ...� �

Julia has both nominal type constructors, such as Number and AbstractArray{T,N}, and a variety
of structural types. Any is a supertype of all types. Finite unions of types are written Union{Int16,
Int32}. Tuple types such as Tuple{String, Number} are covariant in their element types. Finally,

Authors’ addresses: Julia Belyakova, Purdue University, West Lafayette, USA, ybelyako@purdue.edu; Benjamin Chung,
JuliaHub, Boston, USA, benjamin.chung@juliahub.com; Ross Tate, Independent Consultant, Ithaka, USA, research@rosstate.
org; Jan Vitek, Northeastern University, Boston, USA and Charles University, Prague, Czechia, j.vitek@northeastern.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART191
https://doi.org/10.1145/3656421

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-7490-8500
HTTPS://ORCID.ORG/0000-0001-9238-7334
HTTPS://ORCID.ORG/0000-0002-7608-4605
HTTPS://ORCID.ORG/0000-0003-4052-3458
https://doi.org/10.1145/3656421
https://orcid.org/0000-0002-7490-8500
https://orcid.org/0000-0001-9238-7334
https://orcid.org/0000-0002-7608-4605
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.1145/3656421


191:2 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

bounded existential types, called union-all in Julia, are written t wherel<:T<:u, and represent the
union of types t[t'/T] for all valid instantiations l<:t'<:u of the type variable T.

While it has a type-annotation language, Julia does not have a static type system. Thus, subtyping
is only used at run-time, in particular, to find an applicable method for each function call. The
reference definition of subtyping lies in a highly optimized, and evolving, C implementation. Zappa
Nardelli et al. [2018] give a faithful account; the departures from the implementation are believed to
be bugs in the C code. Chung et al. [2019] argue that the complexity of the implementation comes
in equal parts from the type language’s expressive power and from efficiency concerns.
As we will demonstrate, Julia subtyping is undecidable. When a language has an undecidable

static type system, compile-time errors can typically be fixed by adding annotations to the program
as needed. For Julia, incomplete subtyping can incorrectly change the execution of a program, either
during dynamic dispatch, or when adding new method definitions, or when generating code. When
subtyping fails to terminate, the implementation raises an exception with little insight as to how to
fix the offending source code. The subtyping algorithm is still under development, as these issues
suggest: #41948 (a StackOverflowError caused by a function definition), #33137 (a problem with
Julia’s “diagonal rule”); #24166 (a problem with reflexivity and transitivity); #39099 (a problem
with transitivity of variadic tuple arguments).

Our goal is to develop a clear formalization of the intended subtype relation—one that can be
understood and adopted by programmers, and one for which an algorithm can be proved sound
and complete. The breadth of Julia’s type features makes this difficult to do all at once, so in this
paper we focus on bounded existential types.

Fig. 1. Overview

Fig. 1 is a roadmap for this paper. We start with the implementation of subtyping, <∶Julia, used in
practice. The 2018 paper gave a formal definition of that relation, <∶‘18, with some small differences
(e.g. it ignored variadic tuples and singleton types). To validate <∶‘18, the authors performed
extensive testing of both definitions. The handful of differences between them were either ascribed
to bugs—some of which were fixed by the Julia team—or to undefined behavior. Much of the effort
was in establishing a better understanding of Julia’s diagonal rule, which restricts how existential
types can be instantiated in certain situations that were only informally described.While interesting,
the feature is a layer on top of existential types, which we show here are challenging enough on their
own. One of our contributions is that, by ignoring the diagonal rule in particular, we demonstrate
that one can recover a much simpler and more familiar declarative formalization of Julia’s subtyping.
The language intends its types to approximate sets and its subtyping to approximate set inclusion,
a transitive relation. Therefore, the declarative formalization, <∶cjd, simply declares, with an explicit

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

https://github.com/JuliaLang/julia/issues/41948
https://github.com/JuliaLang/julia/issues/33137
https://github.com/JuliaLang/julia/issues/24166
https://github.com/JuliaLang/julia/issues/39099


Decidable Subtyping of Existential Types for Julia 191:3

rule, that subtyping is transitive. While this trivially captures the intended behavior, it also makes
reasoning about subtyping difficult.1 Thus, our second contribution is to establish an invertible
formalization of subtyping, <∶ji, where only one rule can act on a given side at a given time.
Invertible subtyping is proved equivalent to the declarative formalization of subtyping when
restricted to conservative types, meaning types whose quantified type variables’ lower bounds
are subtypes of their corresponding upper bounds. At this point, it is rather easy to show that
subtyping is undecidable. More specifically, we prove the undecidability of invertible subtyping
between conservative types. Our proof proceeds by reduction of subtyping of one of Pierce [1992]’s
deterministic fragments of System 𝐹≤ to invertible subtyping. We do this by translating 𝐹

𝑃
≤ types

to conservative types, and by showing 𝐹
𝑃
≤ subtyping holds if and only if their translations are

invertible supertypes (where the only-if direction relies critically on invertibility of the rules). The
key insight is this flipping of subtyping into supertyping and, likewise, flipping upper-bounded
universal quantification in 𝐹

𝑃
≤ to lower-bounded existential quantification in Julia.

To find a decidable yet practical fragment of Julia types, we conduct an empirical study, demon-
strating that the types actually written by users are stratified. In particular, method type annotations
can be stratified as method signatures that predicatively quantify over non-quantifying value types2

with use-site variance, which Julia already has a shorthand for (e.g. Vector{<:Number}). The key
observation is that use-site variance is the only employed application of impredicative existential
quantification where an existential type variable is instantiated with an existential type. One nice
property of the stratification is that, aside from checking conservativity of bounds, it is syntactic.
Our corpus analysis of all the source code of 9,335 Julia packages finds only a handful of strat-
ification violations in 16.5 million lines of code. We conclude with the definition of algorithmic
subtyping, <∶sa, which we prove specifies a sound and complete algorithm for subtyping between
conservative stratified types. The key insight is that stratification ensures that only one of the two
types being compared contains flexible variables, i.e. existentially quantified variables that need
to be instantiated, preventing major complications like recursive constraints. Combined with the
above contributions, this provides the foundation for a sound and complete algorithm, upon which
future work can expand to encompass the full feature set. Belyakova [2023] in her thesis discusses
many of the missing features in the context of a restricted subtype relation that is shown to be
decidable but not complete. The step-wise approach presented here is key to be able to prove that
important property.

2 BACKGROUND ON JULIA
Julia is a high-level, dynamically typed programming language—originally designed for scientific
computing—that addresses the, so-called, “two-language problem” by providing both productivity
features and performance [Bezanson et al. 2018, 2017]. For productivity, the language provides
garbage collection, dynamic typing, and multiple dispatch—resolved at run-time using subtyping.
For performance, it relies on an optimizing compiler that specializes multiple dispatches to direct
calls [Pelenitsyn et al. 2021]. Subtyping largely follows the combination of nominal subtyping for

1For example, type Nothing is declaratively equivalent to Any where Any<:T<:Nothing; demonstrated by opening the
existential and applying transitivity to Any <∶ Nothing with T as the middle type, even though T never occurs within the
body of the existential. This existential type is odd: its bounds are nonconservative, i.e. its lower bound is not a subtype of
its upper bound.
2Value types are not to be confused with run-time types or, for those familiar with Julia terminology, concrete types.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:4 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

user-defined nominal types and semantic subtyping3 for covariant tuples, unions, and bounded
existential types. While the language has no formal definition of its subtyping algorithm, Zappa
Nardelli et al. [2018] attempted to reverse-engineer an algorithmic definition and test it empirically.
That definition is mostly accurate, with most observed differences due to bugs in Julia.

Fig. 2. Datatype declarations

Nominal types are induced by user-defined datatype declarations and constitute a single-parent
inheritance hierarchy. Abstract types can be inherited from, and concrete types can be instantiated.
Fig. 2 illustrates a definition of several datatypes. Both Real and Ref{t} are abstract; the remaining
are concrete. Parametric types can have non-recursive lower and upper bounds on type variables,
and they are invariant with respect to their type parameters. Thus, Ref{t1} is a subtype of Ref{t2}
only if the arguments are equivalent. Tuples are immutable, and their type parameters are covariant.
Type Union{t . . .} describes a union (not sum) of types. For instance, Real is a subtype of Union{
Number,String}, and Union{t1,t2} is a subtype of t if all components are subtypes: t1<:t and
t2<:t. Following the semantic-subtyping mindset, tuples distribute over unions. For example,
Tuple{String,Union{Int32,Int64}} represents binary tuples where the first component is a
string, and the second is either a 32- or 64-bit integer. Due to distributivity, this type is equivalent to
Union{Tuple{String,Int32},Tuple{String,Int64}}. Bounded existential types, called union-
all in Julia, have the form t where l<:T<:u, where the lower and upper bounds can be omitted and
default to the bottom type—Union{}—and top type—Any—respectively. Existentials can model Java
wildcards but are more expressive. Intuitively, they denote a union of t[t'/T] for all instantiations
of the type variable T such that l<:t'<:u. Similarly to subtyping of union types, the intent is that

• (t where l<:T<:u)<:t2 if t[t'/T]<:t2 for all valid instantiations t' of T,
• t1<:(t where l<:T<:u) if there exists a valid instantiation t' with t1<:t[t'/T].

For example, Vector{Int32} is a subtype of Vector{T} whereT<:Number because T can be instan-
tiated with Int32, and Vector{T} whereT<:Number is a subtype of Vector{S} whereS because
for all valid instantiations t' of T, type variable S can be instantiated with the type t'. Tuples
distribute over existential types; types Tuple{Vector{T} whereT} and Tuple{Vector{T}} whereT
are equivalent.
Existential types are impredicative: quantifiers can appear anywhere in a type, and type vari-

ables can be instantiated with any type. Type Vector{Ref{T} whereT} denotes a heterogeneous
vector of references, whereas Vector{Ref{S}} whereS denotes a union of homogeneous vectors
of references. Thus, a vector containing integer references, Vector{Ref{Int32}}, is a subtype
of the latter but not the former as the type arguments Ref{Int32} and Ref{T} whereT are not
equivalent; in particular, a Ref{String} could be put into a Vector{Ref{T} whereT} but not into
3This is a misnomer, though, because semantic subtyping is subtyping that is complete with respect to a particular
semantics [Castagna and Frisch 2005], which Julia fails to be. Rather, Julia includes expressive subtyping rules commonly
associated with semantic subtyping, such as distributivity of tuples over unions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:5

a Vector{Ref{Int32}}. Top-level existential types appear in signatures of polymorphic method
definitions. Recall that types are only used for multiple dispatch. To call a method, one provides
arguments that inhabit the corresponding existential type. In the method body, the existential is
implicitly unpacked, with the witness type being some valid instantiation induced by subtyping.
Consider a function f(v::Vector{T}) whereT: its signature is Tuple{Vector{T}} whereT. For a
call such as f([5,7,5]), represented with the type Tuple{Vector{Int32}}, dispatch resolution
relies on tuple subtyping—which succeeds in this case—and instantiates T with Int32.

3 SPECIFICATION OF SUBTYPING
As there is no official definition of subtyping, we face the problem of choosing a baseline in our
exploration of decidability of subtyping. One option is to use Zappa Nardelli et al. [2018], as it
matches the implementation, but the complexity of their rules is daunting. Furthermore, being
accurate to the implementation is not necessarily what one wants; the implementation has bugs,
so it can be unclear whether accepting a program is intentional or accidental. Thus, we formalize
declarative subtyping based on the intuitions provided by the Julia documentation. To keep the
paper focused, we omit features not relevant to undecidability, such as distributivity of tuples, the
diagonal rule, nominal inheritance, variadic tuples, “plain bits” values, and singleton types. Our
paper lays the foundations that such extensions can be built upon and establishes a practical means
to address the key source of undecidability.

Julia syntax
𝜎 ∶∶= ⊤ Any top

⊥ Union{} bottom
X X type variable
𝜎 × . . . × 𝜎 Tuple{𝜎 . . . 𝜎} covariant tuple
C⟨𝜎, . . . , 𝜎⟩ C{𝜎, . . . , 𝜎} invariant nominal constructor
𝜎 ∪ 𝜎 Union{𝜎, 𝜎} union
∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎 𝜎 where 𝜎ℓ <∶ X <∶ 𝜎𝑢 bounded existential

Fig. 3. Type grammar

For the remainder of the paper, we depart from the Julia type syntax and adopt a more standard
notation. The type grammar is given by Fig. 3. The shorthand C is for nullary datatypes. Datatype
declarations are implicit and do not restrict type parameters. A kind context is denoted Σ and is a,
possibly empty, sequence of type variables with explicit bounds 𝜎ℓ<∶X<∶𝜎𝑢 . As a shorthand, we
omit⊥ lower bounds and ⊤ upper bounds.
Julia has a notion of type validity: it rejects types with unbound type variables. However, this

notion is too permissive, as it allows a type variable to have a lower bound that is not a subtype
of its upper bound; we call such bounds nonconservative. This causes algorithmic problems and is
an unnecessary degree of freedom; our corpus analysis reveals that nonconservative bounds are
not used in practice. Thus, we consider only types that are well-scoped and conservative. Fig. 4
formalizes type validity, which is parameterized by the subtype relation that enforces conservativity.

3.1 Declarative Subtyping
Our declarative formalization of subtyping is given in Fig. 5. It is parameterized by a validity predi-
cate and includes explicit rules for reflexivity and transitivity. The latter make subtyping reflexive
and transitive by definition. Each of the remaining rules is standard for the relevant feature. Observe

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:6 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Σ ⊢𝑆 ⊤ Σ ⊢𝑆 ⊥

𝜎ℓ<∶X<∶𝜎𝑢 ∈ Σ

Σ ⊢𝑆 X
∀𝑖 ∈ [1, 𝑛] Σ ⊢𝑆 𝜎𝑖

Σ ⊢𝑆 𝜎1 × . . . × 𝜎𝑛

∀𝑖 ∈ [1, 𝑛] Σ ⊢𝑆 𝜎𝑖

Σ ⊢𝑆 C⟨𝜎1 . . . 𝜎𝑛⟩
Σ ⊢𝑆 𝜎1 Σ ⊢𝑆 𝜎2

Σ ⊢𝑆 𝜎1 ∪ 𝜎2

Σ ⊢𝑆 𝜎ℓ Σ ⊢𝑆 𝜎𝑢 Σ ⊢ 𝜎ℓ <∶𝑆 𝜎𝑢 Σ, 𝜎ℓ<∶X<∶𝜎𝑢 ⊢𝑆 𝜎

Σ ⊢𝑆 ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎

⊢𝑆 ⋅

⊢𝑆 Σ Σ ⊢𝑆 𝜎ℓ Σ ⊢𝑆 𝜎𝑢 Σ ⊢ 𝜎ℓ <∶𝑆 𝜎𝑢

⊢𝑆 Σ, 𝜎ℓ<∶X<∶𝜎𝑢

Fig. 4. Type and kind-context validity: Σ ⊢𝑆 𝜎 and ⊢𝑆 Σ for a given subtype relation <∶𝑆

that unlike in 𝐹≤ where universal quantifications are only subtypes of universal quantifications,
here existential quantifications are supertypes of arbitrary types provided appropriate instantiations
exist. The validity predicate specifies the universe of types to consider when applying transitivity
or instantiating existential types.
The parameterized judgments have common instantiations. Σ ⊢

ws
𝜎 denotes validity with the

total subtype relation (i.e. not enforcing conservativity) and formalizes when a type is well-scoped.
Σ ⊢

c
jd 𝜎 and Σ ⊢ 𝜎 <∶cjd 𝜎 denote the mutually-inductively defined conservativity predicate

and declarative subtype relation quantifying over conservative types. Unless otherwise indicated,
declarative subtyping henceforth ranges over conservative types.

Σ ⊢ 𝜎 <∶
𝑉
jd 𝜎

Σ ⊢
𝑉
𝜎
′

Σ ⊢ 𝜎 <∶
𝑉
jd 𝜎

′
Σ ⊢ 𝜎

′
<∶

𝑉
jd 𝜎

′′

Σ ⊢ 𝜎 <∶
𝑉
jd 𝜎

′′

Σ ⊢ 𝜎 <∶
𝑉
jd ⊤ Σ ⊢ ⊥ <∶

𝑉
jd 𝜎

𝜎ℓ<∶X<∶𝜎𝑢 ∈ Σ

Σ ⊢ X <∶
𝑉
jd 𝜎𝑢

𝜎ℓ<∶X<∶𝜎𝑢 ∈ Σ

Σ ⊢ 𝜎ℓ <∶
𝑉
jd X

∀𝑖 ∈ [1, 𝑛] Σ ⊢ 𝜎𝑖 <∶
𝑉
jd 𝜎

′
𝑖

Σ ⊢ 𝜎1 × . . . × 𝜎𝑛 <∶
𝑉
jd 𝜎

′
1 × . . . × 𝜎

′
𝑛

∀𝑖 ∈ [1, 𝑛] Σ ⊢ 𝜎𝑖 <∶
𝑉
jd 𝜎

′
𝑖 Σ ⊢ 𝜎

′
𝑖 <∶

𝑉
jd 𝜎𝑖

Σ ⊢ C⟨𝜎1 . . . 𝜎𝑛⟩ <∶𝑉jd C⟨𝜎 ′1 . . . 𝜎 ′𝑛⟩

Σ ⊢ 𝜎1 <∶
𝑉
jd 𝜎

′
Σ ⊢ 𝜎2 <∶

𝑉
jd 𝜎

′

Σ ⊢ 𝜎1 ∪ 𝜎2 <∶
𝑉
jd 𝜎

′
Σ ⊢ 𝜎𝑖 <∶

𝑉
jd 𝜎1 ∪ 𝜎2

Σ, 𝜎ℓ<∶X<∶𝜎𝑢 ⊢ 𝜎 <∶
𝑉
jd 𝜎

′

Σ ⊢ ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎 <∶
𝑉
jd 𝜎

′

Σ ⊢
𝑉
𝜎X Σ ⊢ 𝜎ℓ <∶

𝑉
jd 𝜎X Σ ⊢ 𝜎X <∶

𝑉
jd 𝜎𝑢

Σ ⊢ 𝜎[X ↦ 𝜎X] <∶𝑉jd ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎

Fig. 5. Declarative subtyping: Σ ⊢ 𝜎 <∶𝑉jd 𝜎 for a given type-validity predicate⊢
𝑉

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:7

Σ ⊢ 𝜎 <∶ji ⊤ Σ ⊢ ⊥ <∶ji 𝜎
′

Σ ⊢ X <∶ji X
𝜎ℓ<∶X<∶𝜎𝑢 ∈ Σ Σ ⊢ 𝜎𝑢 <∶ji 𝜎

′

Σ ⊢ X <∶ji 𝜎
′

𝜎ℓ<∶X<∶𝜎𝑢 ∈ Σ Σ ⊢ 𝜎 <∶ji 𝜎ℓ

Σ ⊢ 𝜎 <∶ji X

∀𝑖 ∈ [1, 𝑛] Σ ⊢ 𝜎𝑖 <∶ji 𝜎
′
𝑖

Σ ⊢ 𝜎1 × . . . × 𝜎𝑛 <∶ji 𝜎
′
1 × . . . × 𝜎

′
𝑛

∀𝑖 ∈ [1, 𝑛] Σ ⊢ 𝜎𝑖 <∶ji 𝜎
′
𝑖 Σ ⊢ 𝜎

′
𝑖 <∶ji 𝜎𝑖

Σ ⊢ C⟨𝜎1, . . . , 𝜎𝑛⟩ <∶ji C⟨𝜎 ′1, . . . , 𝜎 ′𝑛⟩

Σ ⊢ 𝜎1 <∶ji 𝜎
′

Σ ⊢ 𝜎2 <∶ji 𝜎
′

Σ ⊢ 𝜎1 ∪ 𝜎2 <∶ji 𝜎
′

Σ ⊢ 𝜎 <∶ji 𝜎
′
𝑖

Σ ⊢ 𝜎 <∶ji 𝜎
′
1 ∪ 𝜎

′
2

Σ, 𝜎ℓ<∶X<∶𝜎𝑢 ⊢ 𝜎 <∶ji 𝜎
′

Σ ⊢ ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎 <∶ji 𝜎
′

Σ ⊢ji 𝜎X Σ ⊢ 𝜎ℓ <∶ji 𝜎X Σ ⊢ 𝜎X <∶ji 𝜎𝑢 Σ ⊢ 𝜎 <∶ji 𝜎
′[X ↦ 𝜎X]

Σ ⊢ 𝜎 <∶ji ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎
′

Fig. 6. Invertible subtyping: Σ ⊢ 𝜎 <∶ji 𝜎

3.2 Invertible Subtyping
When one knows 𝜎1×𝜎2 is a subtype of 𝜎

′
1×𝜎

′
2, one would often like to deduce that 𝜎1 is a subtype

of𝜎 ′1 and that𝜎2 is a subtype of𝜎
′
2, conceptually inverting the rule for covariant tuples. However, this

is not necessarily true. The kind context could contain a bounded variable 𝜎1 × 𝜎2<∶X<∶𝜎
′
1 × 𝜎

′
2, and

transitivity could use X as its intermediate type without ever connecting the respective projections.
So, without conservativity of bounds, transitivity makes such desirable subtyping inversions
impossible. To this end, we restrict the type system to conservative types. With this restriction, our
problematic bounded variable 𝜎1 × 𝜎2<∶X<∶𝜎

′
1 × 𝜎

′
2 is only valid if 𝜎1 × 𝜎2 can be determined to be

a subtype of 𝜎 ′1 × 𝜎
′
2 without X. From this proof of conservativity, one then hopes to extract the

expected subtypings between the respective projections. Indeed, we prove that, when restricted to
conservative types and kind contexts, declarative subtyping is equivalent to the invertible subtype
relation Σ ⊢ 𝜎 <∶ji 𝜎 , formalized in Fig. 6, which does not contain an explicit transitivity rule.

Theorem 3.1. For any kind context Σ satisfying⊢ji Σ, and for any pair of types 𝜎 and 𝜎 ′ satisfy-
ing Σ ⊢ji 𝜎 and Σ ⊢ji 𝜎

′, the following equivalence holds:

Σ ⊢ 𝜎 <∶
c
jd 𝜎

′
⟺ Σ ⊢ 𝜎 <∶ji 𝜎

′

Proof. The leftward implication is trivially proven by induction on Σ ⊢ 𝜎 <∶ji 𝜎
′, with applica-

tions of reflexivity and transitivity rules of <∶cjd. The bulk of the proof by far is in the rightward
implication. First, we observe that, if its bounds are conservative, an existential type ∃𝜎ℓ<∶X<∶𝜎𝑢 . 𝜎
is equivalent to the type ∃⊥<∶X′<∶𝜎𝑢 . 𝜎[X ↦ 𝜎ℓ ∪ X′]. Then, for the simpler type space with only
upper bounds, we define transitivity-eliminating reductions and show that repeatedly applying
them necessarily terminates. In particular, we translate the system to Girard’s cut-elimination
reductions for proof nets of second-order classical linear logic (PN2) [Girard 1987], which handles
termination of cut elimination in the presence of impredicativity. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:8 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Invertible subtyping is derived from declarative subtyping by baking transitivity into each rule
directly. It allows for an easy use of inversion: when given a subtype relation Σ ⊢ 𝜎 <∶ji 𝜎

′, by
design only one rule can “act on” a given side. For example, only the tuple rule is applicable to
the subtyping ⊢ 𝜎1 × 𝜎2 <∶ji 𝜎

′
1 × 𝜎

′
2, guaranteeing the respective projections are necessarily

subtypes, just as one would hope for. For other features formalized using left and right rules, one
can often use induction to dig up an application of the desired one-sided rule. For example, one can
easily prove that a union is a subtype of another type only if its components are. However, not
all inversions are always possible; for example, a subtype of a union is not necessarily a subtype
of either component of the union. Similarly, invertible subtyping is not quite syntax-directed; in
particular, the right rule for existentials can apply in an infinite number of ways depending on the
instantiating types. So,⊢ Int32 <∶ji ∃X.X can be shown by instantiating X with Int32, or with
Int32 ∪ Int64, or with many other types. Nonetheless, invertible subtyping is easier to reason
about than declarative subtyping. The equivalence is valuable for both proving undecidability and
establishing completeness of our algorithm on restricted types.

4 UNDECIDABILITY OF JULIA SUBTYPING
This section provides a proof of undecidability of Julia subtyping. Consider this code:

This valid Julia program causes a StackOverflowErrorwhen executed. A method with a parameter
of type Ref{<:Theta} would similarly fail if called with a value of type Ref{Kappa(Theta)}.
Furthermore, adding a second method with Ref{Kappa(Theta)} as parameter would also overflow,
as Julia tries to prioritize method definitions by subtyping. The code fragment is a contravariant
translation of Curien and Ghelli [1990]’s gadget for non-termination in 𝐹≤. This singular example
does not prove undecidability, but our translation does. Our proof proceeds by showing that
System 𝐹

𝑃
≤ ’s subtyping is equivalent under a translation into our subtyping calculus, thereby

demonstrating undecidability by reduction.

4.1 System 𝐹
𝑃
≤

We remove arrow types from 𝐹≤ to form the reduced 𝐹
𝑃
≤ as described by Pierce [1992]. Pierce

shows that subtyping in 𝐹
𝑃
≤ is equivalent to subtyping in 𝐹≤ and, therefore, that 𝐹𝑃≤ is undeccidable.

Fig. 7 gives the grammar of 𝐹𝑃≤ , where types are restricted depending on whether they occur in a
negative or positive position. Kind contexts Γ− are (possibly empty) sequences of upper-bounding
type-variable declarations 𝛼≤𝜏− that restrict upper bounds to only be negative types.

𝜏
+ ∶∶= Positive types

Top top
¬𝜏− negative negation
∀𝛼≤𝜏− .𝜏+ positive quantification

𝜏
− ∶∶= Negative types

𝛼 type variable
¬𝜏+ positive negation
∀𝛼≤Top.𝜏− negative quantification

Fig. 7. 𝐹
𝑃
≤ grammar

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:9

Fig. 8 gives the subtyping rules of 𝐹𝑃≤ . As in this paper, the rules treat 𝛼-equivalent types as
implicitly equivalent. As such, the rule 𝐹𝑃≤ -All does not require the two types to use the same
variable name; if the variable names are different, they are implicitly 𝛼-renamed.

Γ
−
⊢ 𝜏

−
≤ Top

𝛼≤𝜏
−
∈ Γ

−
Γ
−
⊢ 𝜏

−
≤ 𝜏

+

Γ
−
⊢ 𝛼 ≤ 𝜏

+

𝐹
𝑃
≤ -All

Γ
−
, 𝛼≤𝜏

−
2 ⊢ 𝜏

−
1 ≤ 𝜏

+

Γ
−
⊢ ∀𝛼≤Top.𝜏−1 ≤ ∀𝛼≤𝜏

−
2 .𝜏

+ 𝐹
𝑃
≤ -Neg

Γ
−
⊢ 𝜏

−
2 ≤ 𝜏

+
1

Γ
−
⊢ ¬𝜏

+
1 ≤ ¬𝜏

−
2

Fig. 8. Subtyping for 𝐹
𝑃
≤ : Γ

−
⊢ 𝜏

−
≤ 𝜏

+

4.2 From 𝐹
𝑃
≤ to Julia

For this reduction, we shall use the invertible subtype relation of Fig. 6 and show that there exists
a suitable contravariant translation ⟦⟧ of 𝐹𝑃≤ types and environments. Our translation is defined
in Fig. 9. We use the nominal type constructors Neg⟨𝜎⟩ and All⟨𝜎, 𝜎⟩ to create invariant contexts
that force type equivalence. For simplicity, we treat 𝐹𝑃≤ type variables as Julia type variables.

𝜏
+

⟦Top⟧ = ⊥

⟦¬𝜏−⟧ = Neg⟨⟦𝜏−⟧⟩
⟦∀𝛼≤𝜏− .𝜏+⟧ = ∃⟦𝜏−⟧<∶𝛼.∃𝛼 ′<∶⟦𝜏+⟧. All⟨𝛼, 𝛼 ′⟩

𝜏
−

⟦𝛼⟧ = 𝛼

⟦¬𝜏+⟧ = ∃⟦𝜏+⟧<∶𝛼. Neg⟨𝛼⟩
⟦∀𝛼≤Top.𝜏−⟧ = ∃𝛼.∃𝛼 ′<∶⟦𝜏−⟧. All⟨𝛼, 𝛼 ′⟩

Γ
− ⟦⋅⟧ = ⋅

⟦Γ−, 𝛼≤𝜏−⟧ = ⟦Γ−⟧, ⟦𝜏−⟧<∶𝛼

Fig. 9. Contravariant translation from 𝐹
𝑃
≤ to Julia

The key insight of the translation is that subtyping of universally quantified types is dual to
subtyping of existentially quantified types. The translation flips an 𝐹

𝑃
≤ judgment Γ− ⊢ 𝜏

−
1 ≤ 𝜏

+
2 into

⟦Γ−⟧ ⊢ ⟦𝜏+2 ⟧ <∶ji ⟦𝜏−1 ⟧, replacing upper-bounded universal quantification with lower-bounded
existential quantification. The translation targets invertible subtyping, rather than declarative
subtyping. We made this choice since, for the translation to transfer undecidability, we need both
that translation preserves subtyping (𝜏−1 ≤ 𝜏

+
2 implies ⟦𝜏+2 ⟧ <∶ji ⟦𝜏−1 ⟧) and that translation reflects

subtyping (⟦𝜏+2 ⟧ <∶ji ⟦𝜏−1 ⟧ implies 𝜏−1 ≤ 𝜏
+
2 ). Showing that the translation reflects subtyping relies

heavily on invertibility. This then leads us into the proof of undecidability.

Theorem 4.1 (Undecidability of Subtyping). For any valid kind contexts Γ− and any pair of
negative type 𝜏− and positive type 𝜏+ valid in Γ

−, the following equivalence holds:

Γ
−
⊢ 𝜏

−
1 ≤ 𝜏

+
2 ⟺ ⟦Γ−⟧ ⊢ ⟦𝜏+2 ⟧ <∶ji ⟦𝜏−1 ⟧

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:10 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Because the former is undecidable, this implies that the latter is also undecidable.

Proof. Consider the conclusion of rule 𝐹𝑃≤ -All: Γ
−
⊢ ∀𝛼≤Top.𝜏−1 ≤ ∀𝛼≤𝜏−2 .𝜏

+. The goal is to
prove this holds if and only if the dual judgment holds: ⟦Γ−⟧ ⊢ ⟦∀𝛼≤𝜏−2 .𝜏+⟧ <∶ji ⟦∀𝛼≤Top.𝜏−1 ⟧.
Expanding the translation begets the following judgment:

⟦Γ−⟧ ⊢ ∃⟦𝜏−2 ⟧<∶𝛼.∃𝛼 ′<∶⟦𝜏+⟧. All⟨𝛼, 𝛼 ′⟩ <∶ji ∃𝛼.∃𝛼 ′<∶⟦𝜏−1 ⟧. All⟨𝛼, 𝛼 ′⟩

The universal quantification is translated into an existentially quantified term of the same vari-
able with upper bounds flipped into (translated) lower bounds, and with another variable with
an upper bound in order to encode covariance. Because of the unique inversion properties of
nominal constructors, having the body All⟨𝛼, 𝛼 ′⟩ for the right existential implies 𝛼 and 𝛼

′ are
necessarily instantiated with the corresponding arguments in the left type.4 Thus the above judg-
ment holds if and only if those instantiations satisfy their bounds in the appropriate kind context.
Only 𝛼

′ has a bound, which invertibility then quickly implies is satisfied if and only if in the
kind context ⟦Γ−⟧, ⟦𝜏−2 ⟧<∶𝛼 (since we can drop 𝛼

′ once it no longer occurs in either type), the
following holds: ⟦Γ−⟧, ⟦𝜏−2 ⟧<∶𝛼 ⊢ ⟦𝜏+⟧ <∶ji ⟦𝜏−1 ⟧. This is the translation of the premise of
𝐹
𝑃
≤ -All. Translation for negated types follows the same concept (dualization into existentially-
bounded variables) but is simplified since there is no reference to the introduced type variable
from within the translated terms. Rule 𝐹𝑃≤ -Neg concludes with Γ

−
⊢ ¬𝜏+1 ≤ ¬𝜏−2 , which trans-

lates to ⟦Γ−⟧ ⊢ Neg⟨⟦𝜏−2 ⟧⟩ <∶ji ∃⟦𝜏+1 ⟧<∶𝛼. Neg⟨𝛼⟩. By reasoning similar to 𝐹
𝑃
≤ -All, invertibility

implies this holds if and only if 𝛼 is instantiated with ⟦𝜏−2 ⟧, though this time with the additional
requirement that the instantiation satisfies its lower-bound constraint.5 Thus this holds if and only
if ⟦Γ−⟧ ⊢ ⟦𝜏+1 ⟧ <∶ji ⟦𝜏−2 ⟧ holds, which is the translation of the premise of 𝐹𝑃≤ -Neg. □

Therefore, 𝐹𝑃≤ subtyping holds if and only if the dualized translated version holds. By Pierce
[1992], we can conclude that our subset of Julia’s subtype relation is undecidable. Chung [2023]
generalizes undecidability onto the broader Julia subtype relation when considering the other
subtyping features as described by Zappa Nardelli et al. [2018].

5 STRATIFYING EXISTENTIAL TYPES FOR JULIA-IN-PRACTICE
We identify a subset of Julia types within which subtyping is decidable and to which existing
programs already conform. In particular, one can stratify types into method signatures over value
types, where quantification in method signatures can only use value types for bounds, and quan-
tification within value types is restricted to use-site variance. In the next section, we demonstrate
that this stratification indeed makes subtyping decidable. We start with an empirical study of Julia
programs to show they already conform to this stratification.

4Technically, invertibility only directly implies the instantiations are equivalent to the corresponding arguments. However,
one can extend the intermediate type and proof system and the reduction process employed in the proof of Th. 3.1 to
furthermore eliminate such equivalences and ensure direct instantiations. This extension adds a specialized form of existential
quantification for precisely the above pattern, with its right rule restricted in the desired manner. Due to invariance of
nominal constructors, transitivity-elimination reduction can be extended to accommodate this restriction while staying in
line with PN2. And because 𝛼 and 𝛼

′ have no lower bounds, there is no need to replace them with a union to integrate
conservativity. Altogether, this means we can get a proof in the desired form for induction.
5This lower bound requires extending the aforementioned intermediate specialized quantifier to support either upper or
lower bounds. So long as only one side is present, we still avoid the complications caused by nonconservative bounds.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:11

𝜓 F (𝜏, . . . , 𝜏) tuple of method parameters
∃𝜏<∶X<∶𝜏 .𝜓 polymorphism
𝜓 ∪𝜓 multipurposing
⊥ exclusion

𝜏 F ⊤ top
⊥ bottom
X type variable
𝜏 × . . . × 𝜏 covariant tuple
C⟨𝜏≪𝜏, . . . , 𝜏≪𝜏⟩ nominal constructor with use-site variance
𝜏 ∪ 𝜏 union

ΘF ⋅ empty kind context
Θ, 𝜏<∶X<∶𝜏 bounded variable

Fig. 10. Stratified types

5.1 Stratified Types
The stratified grammar is defined in Fig. 10. A method signature, 𝜓 , is a union of existential
quantifications of lists of value types as its method parameters. Thus, 𝜓 can represent generic
method signatures for the purpose of multiple dispatch. A value type, 𝜏 , is limited to use-site
variance, rather than full existential quantification, but can use all other type constructors freely. A
type argument 𝜏ℓ≪𝜏𝑢 for a nominal constructor indicates that the run-time argument must be a
supertype of 𝜏ℓ and a subtype of 𝜏𝑢 . When a type argument is of the form 𝜏≪𝜏 , we abbreviate it
as 𝜏 . Upper and lower bounds, for both existentially quantified variables and type arguments, are
always value types.
Julia already provides syntactic support for use-site variance. For the type Vector{T} where

T, one can instead simply write Vector. Similarly, one can write types Vector{<:Number} and
Vector{>:Int32} for, respectively, Vector{T} whereT<:Number and Vector{T} whereT>:Int32.

Crucially for the decidability of subtyping, our restriction rules out types where existential types
inside invariant constructors do not match use-site variance, e.g., Ref{Pair{T, T} where T}. In
particular, the Theta

6 type from Ghelli’s looping gadget is not expressible as a stratified type
because, in the existential Kappa(Z)7, variable Y occurs twice under the invariant Pair constructor.
Thus, Kappa(Z) (and, consequently, Neg(Kappa(Z))) is not encodable as use-site variance and
does not constitute a value type, so it is not allowed as a bound in Theta.
In addition to syntactic stratification, we also require stratified types and kind contexts to be

conservative, where lower bounds must be subtypes of upper bounds (for both variables and type
arguments of datatypes). The validity judgments Θ ⊢𝑆 𝜓 , Θ ⊢𝑆 𝜏 , and ⊢𝑆 Θ are all defined
in the obvious manner, parameterized by a subtype relation on just value types (since method
signatures do not occur in bounds).
There is an obvious syntactic definition for when an existential type corresponds to a nominal

constructor with use-site variance (for example, ∃⊥<∶X<∶⊤. Ref⟨X⟩ is Ref⟨⊥≪⊤⟩). This then
extends to a syntactic correspondence between Julia types and value types, and then between Julia
types and method signatures as well. Although, technically, multiple Julia types can correspond to a
given stratified type, all of these types are trivially equivalent; so, as an abuse of notation, we treat

6
const Theta = Pair{Z, <:Neg(Kappa(Z))} where Z

7
Kappa(T) = Pair{Y, <:Neg(Y)} where Y>:T

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:12 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

stratified types as a subset of Julia types. We say a type conforms to stratification if there exists a
stratified type that it corresponds to. We say a type conforms to stratification up to equivalence if
it is equivalent—according to Julia’s entire feature set—to some type that conforms to stratification.
In particular, one can use distributivity to either pull a nested existential up to the top level or to
push an existential down inside a tuple so that it exemplifies use-site variance. This is why method
signatures have unions, whereas in practice just the method parameters would have unions that
would be automatically distributed up to the signature level. We discuss such equivalences in more
detail below.

5.2 Empirical Evaluation
To estimate the potential impact of imposing this stratification on existing programs, we conducted
a corpus analysis over nearly all of the packages listed in the official Julia registry. Out of more
than 2 million type annotations, only 4 do not conform to stratification up to equivalence. All type
annotations have conservative bounds.

5.2.1 Methodology. The corpus used in our analysis is the entire General Registry, which is the
default source of packages used by Julia programs. The list of packages, obtained from JuliaHub,
contained 9,383 entries as of 2023-05-20. Out of those, 9,335 packages were successfully downloaded.
Some entries were not valid registered packages, or were duplicates, or were no longer publicly
available. The resulting corpus has 172K files with 16.5M lines of code as reported by CLOC 1.9.0.
Our analysis code is written in Julia 1.8.5. It extracts type annotations from all .jl files in the corpus
and reports annotations that do not conform to stratification up to equivalence. The extraction
uses the Julia parser and the MacroTools.jl package for convenient pattern matching over abstract
syntax trees. Source code and the results of the analysis are publicly available.8

5.2.2 Results. Some types do not directly conform to stratification, but they do up to equivalence.
Such types are not flagged by the analysis because their equivalent rewriting could be automated.
At the method-signature level, if a method parameter has an existential at a distributive location,
we first distribute the existential up to the signature level. Then, at the value-type level, we employ
equivalences from the following two categories:

• An existential variable essentially encoding use-site variance but separated from its binding
by distributive constructors. Some examples are Tuple{Vector{T}} whereT and Union{
Vector{T}, Missing} whereT. These types are equivalent to the stratified types Tuple{
Vector{T} whereT} and Union{Vector{T} whereT, Missing}.

• An existential variable used completely unnecessarily as a single component of a tuple. For
example, Tuple{T} whereT<:u is equivalent to Tuple{u}. This category is already automati-
cally rewritten by Julia into the equivalent existential-free form.

The analysis was run on our corpus. One package failed to process; we manually confirmed
its types conform to stratification up to equivalence. There were 206 packages with at least one
file failing to parse; such files were ignored. In the remaining files, the analysis identified a total
of 2,283,011 type annotations. Out of these, 1,887 were not processed because a type-variable
binding contained a macro or quoted expression, and 26,385 were partially processed due to a
macro or quoted expression in a part of the type. Of the 2,281,124 fully-or-partially analyzable
type annotations, 2,281,117 were identified as conforming to stratification up to equivalence, and
7 annotations were flagged as potentially problematic. Three of these seven annotations were false
positives related to Vararg. Variadic arguments are represented as Vararg in Tuple types. For
example, Tuple{Vararg{Int32}} stands for a tuple of arbitrarily many integers. According to
8https://github.com/prl-julia/julia-sub

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

https://github.com/JuliaRegistries/General
http://juliahub.com/ui/Packages
https://github.com/FluxML/MacroTools.jl
https://github.com/prl-julia/julia-sub


Decidable Subtyping of Existential Types for Julia 191:13

Julia subtyping, Vararg is covariant in its type argument, whereas the analysis reported it as if it
were invariant.

Of the remaining four type annotations, two are instances of the same non-conforming type that
can be rewritten into a semantically equivalent type that conforms to stratification. The original
type is the following from package Muon.jl:

This type describes dictionaries of arbitrary key type whose elements are either arrays of numbers,
arrays of elements that are either of homogeneous numeric type or missing, or an arbitrary data
frame. This type has the following semantically equivalent conforming type, but the equivalence is
not derivable according to Julia subtyping:

The other two remaining types do not conform to stratification even up to semantic equivalence.
The first type is the following from package Alicorn.jl:

Here we have an existential quantifier inside a nominal constructor, and its variable occurs more
than once so that it expresses more than just use-site variance. This type requires that the array
contains tuples where the type of the first projection matches the second projection’s element type.
The second type is the following from package UnitfulEquivalences.jl:

Here T and U, used by Quantity, are quantified outside of the containing Level.
To check for conservative bounds, we extracted all type annotations that explicitly declare both

a lower and an upper bound on at least one variable. There were only 9 such annotations, all of
which we inspected manually and found to be conservative.

In sum, our analysis shows that the types programmers write conform to our proposed stratifica-
tion, or do so at least up to equivalences that are easy to recognize.

5.3 Stratified Subtyping
With our stratification empirically justified, we proceed to define invertible subtyping on stratified
types, which we use as a bridge to invertible subtyping on arbitrary types. Fig. 11 gives the rules
for method signatures, and Fig. 12 gives the rules for value types. Subtyping itself has become
stratified; not only is method-signature subtyping layered over value-type subtyping, but for method
signatures, the left rules are layered over the right rules, taking advantage of the stratification
boundary to signal when to move from left to right. The right existential rule now only permits
instantiation with value types 𝜏 , which we prove is faithful to subtyping between the corresponding

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:14 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi 𝜓 ′

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶si 𝜓 ′
∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏𝑖 <∶si 𝜏

′
𝑖

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi (𝜏 ′1, . . . , 𝜏 ′𝑛)

Θ ⊢ ⊥ <∶si 𝜓
′

Θ ⊢ 𝜓1 <∶si 𝜓
′

Θ ⊢ 𝜓2 <∶si 𝜓
′

Θ ⊢ 𝜓1 ∪𝜓2 <∶si 𝜓
′

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi 𝜓 ′𝑖
Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi 𝜓 ′1 ∪𝜓

′
2

Θ, 𝜏ℓ<∶X<∶𝜏𝑢 ⊢ 𝜓 <∶si 𝜓
′

Θ ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .𝜓 <∶si 𝜓
′

Θ ⊢si 𝜏X Θ ⊢ 𝜏ℓ <∶si 𝜏X Θ ⊢ 𝜏X <∶si 𝜏𝑢
Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi 𝜓 ′[X ↦ 𝜏X]

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsi ∃𝜏ℓ<∶X<∶𝜏𝑢 .𝜓 ′

Fig. 11. Stratified invertible subtyping for signatures: Θ ⊢ 𝜓 <∶si 𝜓 (left), Θ ⊢ (𝜏, . . .) <∶rsi 𝜓 (right)

Θ ⊢ 𝜏 <∶si ⊤ Θ ⊢ ⊥ <∶si 𝜏

Θ ⊢ X <∶si X
𝜏ℓ<∶X<∶𝜏𝑢 ∈ Θ Θ ⊢ 𝜏𝑢 <∶si 𝜏

′

Θ ⊢ X <∶si 𝜏
′

𝜏ℓ<∶X<∶𝜏𝑢 ∈ Θ Θ ⊢ 𝜏 <∶si 𝜏ℓ

Θ ⊢ 𝜏 <∶si X

∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏𝑖 <∶si 𝜏
′
𝑖

Θ ⊢ 𝜏1 × . . . × 𝜏𝑛 <∶si 𝜏
′
1 × . . . × 𝜏

′
𝑛

∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏
ℓ ′
𝑖 <∶si 𝜏

ℓ
𝑖 Θ ⊢ 𝜏

𝑢
𝑖 <∶si 𝜏

𝑢′
𝑖

Θ ⊢ C⟨𝜏 ℓ1≪𝜏
𝑢
1 . . . 𝜏

ℓ
𝑛≪𝜏

𝑢
𝑛 ⟩ <∶si C⟨𝜏 ℓ ′1 ≪𝜏

𝑢′
1 . . . 𝜏

ℓ ′
𝑛≪𝜏

𝑢′
𝑛 ⟩

Θ ⊢ 𝜏1 <∶si 𝜏
′

Θ ⊢ 𝜏2 <∶si 𝜏
′

Θ ⊢ 𝜏1 ∪ 𝜏2 <∶si 𝜏
′

Θ ⊢ 𝜏 <∶si 𝜏
′
𝑖

Θ ⊢ 𝜏 <∶si 𝜏
′
1 ∪ 𝜏

′
2

Fig. 12. Stratified invertible subtyping for value types: Θ ⊢ 𝜏 <∶si 𝜏

Julia types. The rule for nominal constructors now directly supports use-site variance without
existential types. In particular, it ensures that, for each type argument, the left-hand use-site range
is contained within the right-hand use-site range. For example, the subtyping⊢ C⟨⊥≪Int32⟩ <∶si
C⟨⊥≪⊤⟩ holds, whereas the subtyping /⊢ C⟨⊥≪Int32⟩ <∶si C⟨Int32≪⊤⟩ does not.
Lemma 5.1. For any kind context Θ satisfying ⊢si Θ, and for any pair of value types 𝜏 and 𝜏

′

satisfying Θ ⊢si 𝜏 and Θ ⊢si 𝜏
′, the following equivalence holds:

Θ ⊢ 𝜏 <∶ji 𝜏
′
⟺ Θ ⊢ 𝜏 <∶si 𝜏

′

Theorem 5.2. For any kind context Θ satisfying⊢si Θ, and for any pair of method signatures𝜓
and𝜓 ′ satisfying Θ ⊢si 𝜓 and Θ ⊢si 𝜓

′, the following equivalence holds:

Θ ⊢ 𝜓 <∶ji 𝜓
′
⟺ Θ ⊢ 𝜓 <∶si 𝜓

′

In addition to bridging invertible subtyping across Julia types and stratified types, Th. 3.1 ex-
tends that bridge to declarative subtyping. Consequently, we know that invertible subtyping for

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:15

conservative stratified types is reflexive and transitive, which will be useful for proving that our
algorithm is complete.

6 DECIDING SUBTYPING FOR STRATIFIED EXISTENTIAL TYPES
At last, we present our algorithm for deciding subtyping of stratified types. Invertible subtyping
brought us substantially closer than declarative subtyping by limiting the rules that can apply to
any pair of types. Stratification brought us closer still by making recursive search terminating, as we
illustrate next. The final step, addressed here, is to deal with the fact that certain rule applications
still involve significant choices. In particular, the right existential rule for method signatures has
to conjure an instantiating type. It is important to understand, though, that the algoritm is not
particularly surprising; it is, for the most part, what one would expect for a constraint-collecting
algorithm. It also aligns with Julia’s implementation, aside from various heuristics, e.g. for picking
which path to explore first. What is new is the insight that stratification and conservativity offer
guarantees that ensure decidability and completeness. That is, stratification and conservativity
explain why Julia’s existing algorithm works well in practice.
In the following, we differentiate between rigid type variables, whose bounds are given by the

kind context Θ, and flexible variables, on which constraints are collected and eventually solved
to produce a corresponding instantiating type. The terminology carries over to types: a rigid
(resp. flexible) type is a one that has only rigid (resp. flexible) type variables.

6.1 Backtracking Proof Search
Invertible subtyping for value types is decidable. The rules in Fig. 12 prescribe a backtracking proof
search algorithm which is trivially sound and complete, provided it terminates. This latter condition
is critical. While 𝐹𝑃≤ satisfies the requirements for backtracking proof search, the search can fail to
terminate. In <∶ji-subtyping of value types, termination is ensured by a simple decreasing measure.

Lemma 6.1. For any kind context Θ satisfying ⊢
ws

Θ, and for any pair of value types 𝜏 and 𝜏 ′

satisfying Θ ⊢
ws

𝜏 and Θ ⊢
ws

𝜏
′, the following is decidable:

Θ ⊢ 𝜏 <∶si 𝜏
′

Consequently, we can simply define algorithmic subtyping on value types Θ ⊢ 𝜏 <∶sa 𝜏 as
invertible subtyping on value types <∶si.

6.2 Marshalling Type Variables
Because of stratification, complexities typically associated with rigid and flexible variables (such as
determining how to solve recursive constraints on flexible variables) are absent from our system.
Recall that stratified subtyping layers the left method-signature rules over the right method-

signature rules, which, in turn, are layered over value-type subtyping. Since the only algorithmic
rules that would need to introduce rigid or flexible variables for Julia are, respectively, the left and
right existential rules, this means we can introduce all rigid variables, and then all flexible variables,
and then proceed to value subtyping wherein neither get introduced. Consequently, only rigid
variables occur in the left method signature and only flexible variables occur in the right method
signature, which is a valuable property. While contravariance might cause left and right to swap,
if we track such directionality, we can know whether a variable is rigid or flexible—and what we
should do with it—simply by knowing the correct direction and which side of the subtyping the
variable is occurring on. Furthermore, when the variable is flexible and we need to collect the other
side as a constraint on that variable, the constraint is known to contain only rigid variables. In
particular, this means that the constraint cannot be recursive. Thus, we can exploit stratification

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:16 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa 𝜓 ′ ↝ ∅

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶sa 𝜓 ′
∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏𝑖 <∶

→
sa 𝜏

′
𝑖 ↝ K𝑖

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa (𝜏 ′1, . . . , 𝜏 ′𝑛) ↝ K1 ∪ . . . ∪ K𝑛

Θ ⊢ ⊥ <∶sa 𝜓
′

Θ ⊢ 𝜓1 <∶sa 𝜓
′

Θ ⊢ 𝜓2 <∶sa 𝜓
′

Θ ⊢ 𝜓1 ∪𝜓2 <∶sa 𝜓
′

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa 𝜓 ′𝑖 ↝ K

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa 𝜓 ′1 ∪𝜓
′
2 ↝ K

Θ, 𝜏ℓ<∶X<∶𝜏𝑢 ⊢ 𝜓 <∶sa 𝜓
′

Θ ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .𝜓 <∶sa 𝜓
′

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa 𝜓 ′ ↝ KX
Θ ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .KX ↝ K

Θ ⊢ (𝜏1, . . . , 𝜏𝑛) <∶rsa ∃𝜏ℓ<∶X<∶𝜏𝑢 .𝜓 ′ ↝ K

Fig. 13. Algorithmic subtyping for signatures: Θ ⊢ 𝜓 <∶sa 𝜓 (left) and Θ ⊢ (𝜏, . . . , 𝜏) <∶rsa 𝜓 ↝ K (right)

to carefully marshal rigid and flexible variables and thereby prevent all major complexities for
constraint solving.

Fig. 13 presents the algorithmic subtyping rules for method signatures. The left rules, interpreted
using backtracking proof search, introduce rigid variables on the left until reaching method pa-
rameters. The right rules are then also interpreted using backtracking proof search, but with the
constraint set K as an output of the search. These right rules introduce flexible variables on the right
until reaching method parameters, at which point they defer to constraint-collecting value-type sub-
typing with the direction superscript (→) indicating the flexible variables are on the right. After those
constraints are collected, the respective backtracking proof search returns the resulting constraint
set. Furthermore, the right existential rules each solve the constraints for the flexible variables they
introduced—in reverse order—using the constraint-solving algorithm discussed in Section 6.4. Due
to explicit flexible-variable bounds possibly referring to previously introduced flexible variables,
constraint resolution can result in more constraints on those previously introduced variables.

Theorem 6.2. For any pair of method signatures 𝜓 and 𝜓 ′ satisfying ⋅ ⊢ws
𝜓 and ⋅ ⊢ws

𝜓
′, the

following is decidable:
⋅ ⊢ 𝜓 <∶sa 𝜓

′

Theorem 6.3. For any pair of method signatures 𝜓 and 𝜓 ′ satisfying ⋅ ⊢sa 𝜓 and ⋅ ⊢sa 𝜓
′, the

following equivalence holds:

⋅ ⊢ 𝜓 <∶si 𝜓
′
⟺ ⋅ ⊢ 𝜓 <∶sa 𝜓

′

6.3 Directed Constraint Collection
After method-signature subtyping takes care of introducing, and later solving, all variables, only
value types are needed to determine the constraints flexible variables need to satisfy. The constraint
sets K collected during this process are finite sets of constraints of either the form X ≥ 𝜏ℓ or X ≤ 𝜏𝑢 ,
where X is a flexible variable and 𝜏ℓ and 𝜏𝑢 are rigid types. In order to maintain these invariants,
constraint-collecting subtyping is directed. A direction 𝛿 is either← or→, with the arrow pointing
from the side with the rigid type to the side with the flexible type. In the case of contravariance,
the direction is reversed, denoted −𝛿 , in the obvious manner. Using these new concepts, the rules
for constraint-collecting algorithmic subtyping for value types are presented in Fig. 14.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:17

Θ ⊢ 𝜏 <∶
𝛿
sa ⊤ ↝ ∅ Θ ⊢ ⊥ <∶

𝛿
sa 𝜏 ↝ ∅

Θ ⊢ X <∶
←
sa 𝜏 ↝ X ≤ 𝜏 Θ ⊢ 𝜏 <∶

→
sa X ↝ X ≥ 𝜏

𝜏ℓ<∶X<∶𝜏𝑢 ∈ Θ Θ ⊢ 𝜏𝑢 <∶
→
sa 𝜏 ↝ K

Θ ⊢ X <∶
→
sa 𝜏 ↝ K

𝜏ℓ<∶X<∶𝜏𝑢 ∈ Θ Θ ⊢ 𝜏 <∶
←
sa 𝜏ℓ ↝ K

Θ ⊢ 𝜏 <∶
←
sa X ↝ K

∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏𝑖 <∶
𝛿
sa 𝜏

′
𝑖 ↝ K𝑖

Θ ⊢ 𝜏1 × . . . × 𝜏𝑛 <∶
𝛿
sa 𝜏

′
1 × . . . × 𝜏

′
𝑛 ↝ K1 ∪ . . . ∪ K𝑛

∀𝑖 ∈ [1, 𝑛] Θ ⊢ 𝜏
ℓ ′
𝑖 <∶

−𝛿
sa 𝜏

ℓ
𝑖 ↝ Kℓ

𝑖 Θ ⊢ 𝜏
𝑢
𝑖 <∶

𝛿
sa 𝜏

𝑢′
𝑖 ↝ K𝑢

𝑖

Θ ⊢ C⟨𝜏 ℓ1≪𝜏
𝑢
1 . . . 𝜏

ℓ
𝑛≪𝜏

𝑢
𝑛 ⟩ <∶𝛿sa C⟨𝜏 ℓ ′1 ≪𝜏

𝑢′
1 . . . 𝜏

ℓ ′
𝑛≪𝜏

𝑢′
𝑛 ⟩ ↝ Kℓ

1 ∪ K𝑢
1 ∪ . . . ∪ Kℓ

𝑛 ∪ K𝑢
𝑛

Θ ⊢ 𝜏1 <∶
𝛿
sa 𝜏 ↝ K1 Θ ⊢ 𝜏2 <∶

𝛿
sa 𝜏 ↝ K2

Θ ⊢ 𝜏1 ∪ 𝜏2 <∶
𝛿
sa 𝜏 ↝ K1 ∪ K2

Θ ⊢ 𝜏 <∶
𝛿
sa 𝜏𝑖 ↝ K

Θ ⊢ 𝜏 <∶
𝛿
sa 𝜏1 ∪ 𝜏2 ↝ K

Fig. 14. Constraint-collecting algorithmic subtyping for value types: Θ ⊢ 𝜏 <∶𝛿sa 𝜏 ↝ K

These rules have a clear correspondence with (non-constraint-collecting) algorithmic (i.e. in-
vertible) subtyping. Most of them simply furthermore propagate the constraints collected from the
premises. The only interesting rules are those for variables. If the direction points to the variable,
then the corresponding constraint on that necessarily flexible variable is generated—this is the only
way in which constraints are introduced. Otherwise, if the direction points away from the variable,
the appropriate bound on that necessarily rigid variable is employed.

In order to discuss the properties of constraint collection formally, we need to introduce notions
of assignments, substitutions, and satisfaction. An assignment 𝜃 is a finite partial mapping of type
variables X to value types 𝜃(X). Assignments extend to substitutions on value types 𝜏[𝜃] in the
obvious manner. An assignment between kind contexts is one that satisfies ⊢ 𝜃 ∶ Θ𝐹 → Θ𝑅 if, for
each 𝜏ℓ<∶X<∶𝜏𝑢 ∈ Θ𝐹 , a corresponding type 𝜃(X) exists and is conservative inΘ𝑅 (i.e.Θ𝑅 ⊢sa 𝜃(X)
holds) and lies between its substituted bounds (i.e. Θ𝑅 ⊢ 𝜏ℓ[𝜃] <∶sa 𝜃(X) and Θ𝑅 ⊢ 𝜃(X) <∶sa
𝜏𝑢[𝜃] hold), where Θ𝐹 and Θ𝑅 bind flexible and rigid variables, respectively.

A constraint set is valid, Θ𝑅 ⊢ K ⊣ Θ𝐹 , when the bound variable in each constraint is declared
inΘ𝐹 and the constraining type in each constraint is rigid (i.e. conservative inΘ𝑅). An assignment 𝜃
from Θ𝐹 to Θ𝑅 satisfies a constraint set, Θ𝑅 ⊢sa 𝜃 ⊣ K , if for each constraint the value type
assigned to the variable by 𝜃 is an algorithmic supertype/subtype of the constraining type in Θ𝑅 .

Lemma 6.4. For any kind contexts Θ𝑅 and Θ𝐹 satisfying⊢sa Θ𝑅 and⊢sa Θ𝐹 , for any pair of value
types 𝜏 and 𝜏 ′ satisfying Θ𝑅 ⊢sa 𝜏 and Θ𝐹 ⊢sa 𝜏

′, the following hold:

Marshalling Any constraint set K satisfying Θ𝑅 ⊢ 𝜏 <∶→sa 𝜏
′
↝ K is valid, i.e. Θ𝑅 ⊢ K ⊣ Θ𝐹

holds.
Soundness For any constraint set K satisfying Θ𝑅 ⊢ 𝜏 <∶→sa 𝜏

′
↝ K, any assignment 𝜃 satisfy-

ing⊢ 𝜃 ∶ Θ𝐹 → Θ𝑅 and Θ𝑅 ⊢sa 𝜃 ⊣ K also satisfies Θ𝑅 ⊢ 𝜏 <∶sa 𝜏
′[𝜃].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:18 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

∀X ≥ 𝜏
′
ℓ ∈ K,X ≤ 𝜏

′
𝑢 ∈ K. Θ ⊢ 𝜏

′
ℓ <∶sa 𝜏

′
𝑢

∀X ≥ 𝜏
′
ℓ ∈ K. Θ ⊢ 𝜏

′
ℓ <∶

→
sa 𝜏𝑢 ↝ Kℓ

𝜏
′
ℓ

∀X ≤ 𝜏
′
𝑢 ∈ K. Θ ⊢ 𝜏ℓ <∶

←
sa 𝜏

′
𝑢 ↝ K𝑢

𝜏 ′𝑢

Kℓ = {X′ ≥ 𝜏
′
ℓ ∈ K ∣ X′ ≠ X} K𝑢 = {X′ ≤ 𝜏

′
𝑢 ∈ K ∣ X′ ≠ X}

Θ ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ Kℓ ⋃K𝑢 ⋃X≥𝜏 ′ℓ∈K K
ℓ

𝜏
′
ℓ
⋃X≤𝜏 ′𝑢∈K K

𝑢

𝜏 ′𝑢

Fig. 15. Constraint solving: Θ ⊢ ∃𝜏<∶X<∶𝜏 .K ↝ K

Completeness For any assignment 𝜃 satisfying ⊢ 𝜃 ∶ Θ𝐹 → Θ𝑅 , if Θ𝑅 ⊢ 𝜏 <∶sa 𝜏
′[𝜃] holds

then there exists a constraint set K such that Θ𝑅 ⊢ 𝜏 <∶→sa 𝜏
′
↝ K and Θ𝑅 ⊢sa 𝜃 ⊣ K hold.

Computability The set of constraint sets K satisfying Θ𝑅 ⊢ 𝜏 <∶→sa 𝜏
′
↝ K is finite and

computably enumerable.

Likewise for the opposite direction (←), though with 𝜏 and 𝜏 ′ satisfying Θ𝐹 ⊢sa 𝜏 and Θ𝑅 ⊢sa 𝜏
′

instead.

6.4 Constraint Solving
If constrained subtyping succeeds and generates a constraint set K, the constraints on the most
recently introduced unsolved flexible variable X are then solved by employing backtracking proof
search on the rule for the judgment Θ ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ K′ given in Fig. 15. To understand the
design of this rule, it is important to be mindful of where rigid and flexible variables can and cannot
occur. All types that are constraining variables in K necessarily contain only rigid variables. On
the other hand, the bounds 𝜏ℓ and 𝜏𝑢 of X necessarily contain only flexible variables (and do not
contain X).

Each premise of the rule in Fig. 15 corresponds to a step of the (backtracking) algorithm:
(1) For each pair of (necessarily rigid) collected lower bound 𝜏 ′ℓ and collected upper bound 𝜏 ′𝑢

on X in K, fail unless 𝜏 ′ℓ is a subype of 𝜏
′
𝑢 , since transitivity implies this must hold for any

instantiation of X.
(2) For each (necessarily rigid) collected lower bound 𝜏 ′ℓ on X in K, let Kℓ

𝜏
′
ℓ
be a constraint set

collected from checking that 𝜏 ′ℓ is a subtype of the (necessarily flexible) given upper bound 𝜏𝑢
of X, which again transitivity implies must hold for any instantiation of X.

(3) For each (necessarily rigid) collected upper bound 𝜏 ′𝑢 on X in K, let K𝑢

𝜏 ′𝑢
be a constraint set

collected from checking that the (necessarily flexible) given lower bound 𝜏ℓ of X is a subtype
of 𝜏 ′𝑢 , which again transitivity implies must hold for any instantiation of X.

(4) Let Kℓ be the set of (necessarily rigid) collected lower bounds on variables other than 𝑋 ,
whose rigidity ensures they do not contain X.

(5) Let K𝑢 be the set of (necessarily rigid) collected upper bounds on variables other than 𝑋 ,
whose rigidity ensures they do not contain X.

Then the algorithm returns the union of all the constructed constraint sets. One might be surprised
that the algorithm never actually constructs a satisfying instantiation of X. This is because stratifi-
cation and consistency were able to ensure that none of the remaining constraints contain X, and
so instantiating it would have no effect on the constraint set. Nonetheless, instantiating X with the
union of its given and collected lower bounds necessarily satisfies its constraints (relying on the
fact that consistency ensures its given lower bound is a subtype of its given upper bound), and as
such the following holds.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:19

Lemma 6.5. For any kind contexts Θ𝑅 and Θ𝐹 satisfying⊢sa Θ𝑅 and⊢sa Θ𝐹 , for any pair of value
types 𝜏ℓ and 𝜏𝑢 satisfying Θ𝐹 ⊢sa 𝜏ℓ and Θ𝐹 ⊢sa 𝜏𝑢 and Θ𝐹 ⊢ 𝜏ℓ <∶sa 𝜏𝑢 , for any type variable X
not declared by either Θ𝑅 or Θ𝐹 , and for any constraint set K satisfying Θ𝑅 ⊢ K ⊣ Θ𝐹 , 𝜏ℓ<∶X<∶𝜏𝑢 ,
the following hold:

Marshalling Any constraint set K′ satisfying Θ𝑅 ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ K′ is valid without X,
i.e. Θ𝑅 ⊢ K′ ⊣ Θ𝐹 holds.

Soundness For any constraint set K′ satisfyingΘ𝑅 ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ K′ and any assignment 𝜃
satisfying ⊢ 𝜃 ∶ Θ𝐹 → Θ𝑅 , if Θ𝑅 ⊢sa 𝜃 ⊣ K′ holds then there exists a value type 𝜏X satisfying
Θ𝑅 ⊢sa 𝜏X andΘ𝑅 ⊢ 𝜏ℓ[𝜃] <∶sa 𝜏X andΘ𝑅 ⊢ 𝜏X <∶sa 𝜏𝑢[𝜃] such thatΘ𝑅 ⊢sa 𝜃,X ↦ 𝜏X ⊣ K
holds.

Completeness For any assignment 𝜃 satisfying⊢ 𝜃 ∶ Θ𝐹 → Θ𝑅 and any value type 𝜏X satisfy-
ing Θ𝑅 ⊢sa 𝜏X and Θ𝑅 ⊢ 𝜏ℓ[𝜃] <∶sa 𝜏X and Θ𝑅 ⊢ 𝜏X <∶sa 𝜏𝑢[𝜃], if Θ𝑅 ⊢sa 𝜃,X ↦ 𝜏X ⊣ K
holds then there exists a constraint set K′ satisfying Θ𝑅 ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ K′ and Θ𝑅 ⊢sa
𝜃 ⊣ K′.

Computability The set of constraint sets K′ satisfying Θ𝑅 ⊢ ∃𝜏ℓ<∶X<∶𝜏𝑢 .K ↝ K′ is finite and
computably enumerable.

6.5 Example of Constraint Collection and Solving
To illustrate how the algorithm works more concretely, consider the subtyping between signatures
(String, Ref⟨Int⟩) and ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩). This subtyping should hold be-
cause X and Y can be instantiated with value types String∪Int and Int. The following derivation
illustrates the generation of the necessary constraints on type variables X and Y.

⊢ String <∶
→
sa X ↝ X ≥ String

⊢ Int <∶
→
sa Y ↝ Y ≤ Int ⊢ Y <∶

←
sa Int ↝ Y ≥ Int

⊢ Ref⟨Int⟩ <∶→sa Ref⟨Y⟩ ↝ {Y ≥ Int, Y ≤ Int}
⊢ (String, Ref⟨Int⟩) <∶rsa (X, Ref⟨Y⟩) ↝ {X ≥ String, Y ≥ Int, Y ≤ Int}

(b)

⊢ (String, Ref⟨Int⟩) <∶rsa ∃⊥<∶Y<∶X. (X, Ref⟨Y⟩) ↝ {X ≥ String,X ≥ Int}
(a)

⊢ (String, Ref⟨Int⟩) <∶rsa ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩) ↝ ∅

⊢ (String, Ref⟨Int⟩) <∶sa ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩)
Since there is no existential quantification on the left, subtyping starts by opening right existential

types (X first, then Y) until method parameters are reached. For value types, directed constraint-
collecting subtyping <∶→sa generates constraints on flexible variables X and Y. Initially, flexible
variables appear only on the right of the judgment, and thus, <∶→sa used for tuple components points
to the right; furthermore, constraints themselves are free from flexible variables due to constraining
types coming from the opposite side of the judgment. Whenever constraint-collecting subtyping
hits an invariant constructor, flexible variables move to the opposite side in one half of checking
the required equivalence, which is why left-facing <∶←sa is used for⊢ Y <∶←sa Int ↝ Y ≥ Int.
Once all constraints induced by subtyping of value types are collected, they are solved for the

innermost flexible variable, Y in the example, incorporating its explicitly given bounds. Here, (b)
denotes a constraint-solving step for the innermost variable Y:

⊢ Int <∶sa Int ⊢ ⊥ <∶
←
sa Int ↝ ∅ ⊢ Int <∶

→
sa X ↝ X ≥ Int

⊢ ∃⊥<∶Y<∶X. {X ≥ String, Y ≥ Int, Y ≤ Int} ↝ {X ≥ String,X ≥ Int}
It checks that the (single) collected lower bound is a subtype of the (single) collected upper bound,
the given lower bound is a subtype of the (single) collected upper bound, and the (single) collected

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:20 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

lower bound is a subtype of the given upper bound. In the first check, both types are necessarily rigid,
so no contraint-collection is performed. The second check succeeds without additional constraints.
But the third check imposes a new constraint on X, which is added to the collection of preexisting
constraints on X. These checks confirm that Y can be correctly instantiated as the union of its given
and (single) collected lower bound: ⊥ ∪ Int.

Next, (a) denotes a constraint-solving step for the outermost variable X:

⊢ String <∶
→
sa ⊤ ↝ ∅ ⊢ Int <∶

→
sa ⊤ ↝ ∅

⊢ ∃⊥<∶X<∶⊤. {X ≥ String,X ≥ Int} ↝ ∅

It checks that the (two) collected lower bounds are subtypes of the given upper bound, which
both succeed without additional constraints (as would always be the case when solving the final
flexible variable), and then it has no more checks to perform because there are no collected upper
bounds on X. These checks confirm that X can be correctly instantiated as the union of its given
and collected lower bounds: ⊥ ∪ String ∪ Int.

After the outermost variable, the invariants granted by stratification and consistency ensure the
resulting constraint set is empty. So, if this point is reached by the backtracking proof search, the
subtyping between method signatures necessarily holds.

6.6 Sound and Complete Subtyping Algorithm
Putting all the pieces together, we show that algorithmic subtyping for method signatures provides
a sound and complete decision procedure for declarative subtyping on conservative stratified types.

Theorem 6.6 (Decidability of Conservative and Stratified Julia). For any pair of method
signatures𝜓 and𝜓 ′ satisfying ⋅ ⊢sa 𝜓 and ⋅ ⊢sa 𝜓

′, the following is decidable:

⋅ ⊢ 𝜓 <∶
c
jd 𝜓

′

Proof. By Th. 3.1, Th. 5.2, and Th. 6.3, the above subtyping holds iff ⋅ ⊢ 𝜓 <∶sa 𝜓
′. By Th. 6.2,

the latter is decidable. □

7 RELATEDWORK
Designing decidable subtyping for production languages is challenging. Recent results include
proofs of undecidability for Java generics by Grigore [2017] and Scala 3 by Hu and Lhoták [2019].
Expressiveness and decidability exist in a trade-off space. Users may prefer more expressive types
even if the compiler may fail, as long as failures are rare cases. Failures that can manifest at run-time
are more serious. Mainstream languages with subtyping usually restrict run-time subtype queries
[Kennedy and Pierce 2007]. This is not so in Julia, as its full subtype relation is exercised at run-time.

Aiming for decidability, Julia’s designers deliberately avoided features already established to be
problematic, such as F-bounded polymorphism, contravariant nominal constructors, and multiple
inheritance. Based on those restrictions, Bezanson [2015] conjectured decidability. However, he
did point out that the combination of nominal constructors and contravariance in lower bounds
of existential types is akin to the source of undecidability in 𝐹≤, which we have now formally
established.

System 𝐹≤. Introduced by Cardelli et al. [1991], System 𝐹≤ combines System F and subtyping. As
already mentioned, 𝐹≤ provides bounded universal quantification, whereas Julia provides bounded
existential quantification. This difference is dual in nature and so not particularly impactful upon
algorithmic concerns. However, there is another much more algorithmically-impactful difference:
subtyping in 𝐹≤ is restricted so that the only subtypes/supertypes of universally quantified types

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:21

are universally quantified types—that is, quantifications must align. There is a good reason for
this difference: unlike Julia, 𝐹≤ supports explicit type application, which only makes sense if
quantifications stay aligned. Regardless of the reason, this difference means 𝐹≤ avoids a major
challenge that Julia faces: whereas Julia needs to find a suitable instantiating type for a quantified
variable, in 𝐹≤ that instantiating type is explicitly restricted to be the quantified variable of the
other type. This makes 𝐹≤’s invertible subtype truly syntax-directed, whereas Julia must resort to
collecting and solving constraints on flexible variables.
Yet, despite 𝐹≤’s restrictive subtyping, Pierce [1992] proved it can encode the halting problem

for two-counter machines [Hopcroft and Ullman 1990] and therefore is undecidable. Yet there are
variations of 𝐹≤ for which subtyping is decidable.

Restricting Subtyping. Kernel 𝐹≤ [Cardelli andWegner 1985] forces even more alignment between
subtypes: not only must quantifications align, they must have the identical bounds as well. This
restriction is decidable, though rather limiting. Hu and Lhoták [2019] and Mackay et al. [2019]
have shown that one can relax this by splitting the kind context into left and right parts so that,
effectively, each bound is only used by the type that introduced it. However, this causes subtyping
to no longer satisfy transitivity.

Restricting Types. Instead of restricting subtyping, Mackay et al. [2020] achieved decidability
while retaining transitivity by instead restricting types. In fact, their solution is to stratify types
into impredicative and predicative layers. The impredicative layer has more restrictive subtyping,
akin to Kernel 𝐹≤, whereas the predicative layer has more restrictive types. It is interesting that we
arrived at a similar stratification though for a very different reason. In particular, we discovered
that stratification eliminated the complexities Julia faced in constraint solving by, in particular,
entirely avoiding the possibility of recursive constraints. On the other hand, Mackay et al. [2020]
still rely on the quantification alignment inherent in 𝐹≤ and as such have no concern for constraint
solving. This difference in concerns explains the difference in where stratification is imposed in the
two systems.
Beyond 𝐹≤, this approach of restricting types has been applied to prior practical systems as

well. Kennedy and Pierce [2007] identified three decidable fragments of undecidable subtyping
in the context of nominal inheritance and variance: the fragments can be obtained by restricting
either contravariance, expansive class tables, or multiple-instantiation inheritance. Greenman et al.
[2014] proposed a material-shape separation for Java generics that recovers decidability: it limits
F-bounded polymorphism to the subset of types, called shapes, used exclusively as constraints. As
we have, they conducted a corpus analysis to demonstrate that this restriction would be compatible
with how programmers were using types in practice. Mackay et al. [2019] extend the material-shape
separation to path-dependent and recursive types.

Bounded Existentials. In Java, a variable of type List<? extends Number> can be assigned any list
whose elements are a subtype of Number. The “?” is known as a wildcard, and this wildcard-typed list
effectively represents ∃X<:Number.List<X>. The wildcard mechanism of Java generics [Torgersen
et al. 2004] is an encoding of use-site variance [Igarashi and Viroli 2002; Krab Thorup and Torgersen
1999], which is another widely used restricted form of bounded existential types. There have been
multiple formalizations of Java wildcards [Cameron et al. 2008; Torgersen et al. 2005], though
they focused on type soundness rather than decidability. Smith and Cartwright [2008] found
inconsistencies in Java’s type inference and subtyping algorithms and proposed a solution using a
limited form of union types, with a conjecture on the decidability of subtyping. Wehr and Thiemann
[2009] identified multiple undecidable subtype relations for bounded existential types in formal
models inspired by Java. Tate et al. [2011] highlighted multiple sources of non-termination in Java

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:22 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

subtyping, e.g. recursive constraints on type variables and wildcards in the inheritance hierarchy.
With some practical restrictions, they provide a terminating subtyping algorithm, though this has
been mostly superseded by the aforementioned material-shape separation [Greenman et al. 2014].
Rather than encode use-site variance, Morrisett et al. [1998]’s typed assembly language (TAL)

uses constrained existential types to track that the unknown exact type of a closure can be passed
to the code pointer extracted from that closure. Early works required manually coercing between
existential types, but Tate et al. [2010] developed a system with decidable subtyping for and even
inferability of its existential types. However, the algorithmic framework they developed [Tate et al.
2008] relies heavily on rigidly structured types, and they illustrate how even ⊥-like types (such as
the type of a null pointer) cause fundamental problems due to violating this structure.

Subtype Constraints. Constraint generation and solving techniques are used in type inference.
Most famously, equality constraints and unification were employed by Hindley [1969] and Damas
and Milner [1982] in the context of a functional language with parametric polymorphism. With
subtyping, equality constraints become subtype constraints. For example, Aiken and Wimmers
[1993] extended Damas–Hindley–Milner inference with subtyping for recursive, union, and in-
tersection types, and gave an algorithm for solving a system of constraints with restricted union
and intersection types. Trifonov and Smith [1996] considered polymorphic types with explicit
recursive constraints on type variables: they studied a corresponding subtype relation and provided
its decidable approximation. Later, Pottier [1998] demonstrated how to improve the performance
of inference with subtype constraints. Bourdoncle and Merz [1997] used a restricted form of con-
strained polymorphic types in a language with multi-methods and decidable subtyping. Castagna
et al. [2015] dealt with subtype constraints for set-theoretic types with negation types. Chandra et al.
[2016] and Chaudhuri et al. [2017] tackled flow-sensitive type inference with unusual constraint
languages going beyond typical subtype constraints.

8 CONCLUSION
Decidability of Julia subtyping can be recovered by restricting types to a stratified grammar for
the core of Julia’s type-annotation language, most importantly, bounded existential types. This
restriction is practical, as the vast majority of Julia programs already conform to it. However, the
formalism presented here is still incomplete; it is missing types such as variadic arguments, and it is
missing rules such as distributivity. More work needs to be done to develop a sound and complete
algorithm for Julia’s entire feature set.

ACKNOWLEDGMENTS
We thank the PLDI and POPL reviewers for their suggestions and feedback. This workwas supported
by the Czech Ministry of Education, Youth and Sports under program ERC-CZ, grant agreement
LL2325, NSF grants CCF-1910850, CNS-1925644, and CCF-2139612, as well as the GACR EXPRO
grant 23-07580X.

REFERENCES
Alexander Aiken and Edward L. Wimmers. 1993. Type inclusion constraints and type inference. In Conference on Functional

Programming Languages and Computer Architecture (FPCA). https://doi.org/10.1145/165180.165188
Julia Belyakova. 2023. Decidable Subtyping of Existential Types for the Julia Language. Ph. D. Dissertation. Northeastern Uni-

versity. https://onesearch.library.northeastern.edu/permalink/01NEU_INST/87npqb/cdi_proquest_journals_2853689755
Jeff Bezanson. 2015. Abstraction in technical computing. Ph. D. Dissertation. Massachusetts Institute of Technology.

http://hdl.handle.net/1721.1/99811
Jeff Bezanson, Jiahao Chen, Ben Chung, Stefan Karpinski, Viral B. Shah, Jan Vitek, and Lionel Zoubritzky. 2018. Julia:

Dynamism and Performance Reconciled by Design. Proc. ACM Program. Lang. 2, OOPSLA (2018). https://doi.org/10.
1145/3276490

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

https://doi.org/10.1145/165180.165188
https://onesearch.library.northeastern.edu/permalink/01NEU_INST/87npqb/cdi_proquest_journals_2853689755
http://hdl.handle.net/1721.1/99811
https://doi.org/10.1145/3276490
https://doi.org/10.1145/3276490


Decidable Subtyping of Existential Types for Julia 191:23

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia: A Fresh Approach to Numerical Computing.
SIAM Rev. 59, 1 (2017). https://doi.org/10.1137/141000671

Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank Zdybel. 1986. CommonLoops:
Merging Lisp and Object-Oriented Programming. In Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA). https://doi.org/10.1145/28697.28700

Francois Bourdoncle and Stephan Merz. 1997. Type checking higher-order polymorphic multi-methods. In Symposium on
Principles of Programming Languages (POPL). https://doi.org/10.1145/263699.263743

Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. 2008. A Model for Java with Wildcards. In European Conference on
Object-Oriented Programming (ECOOP). https://doi.org/10.1007/978-3-540-70592-5_2

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1991. An Extension of System F with Subtyping. In
Theoretical Aspects of Computer Software (TACS). https://doi.org/10.1007/3-540-54415-1_73

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comput. Surv.
17, 4 (1985). https://doi.org/10.1145/6041.6042

Giuseppe Castagna and Alain Frisch. 2005. A Gentle Introduction to Semantic Subtyping. In Principles and Practice of
Declarative Programming (PPDP). https://doi.org/10.1145/1069774.1069793

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types:
Part 2: Local Type Inference and Type Reconstruction. In Symposium on Principles of Programming Languages (POPL).
https://doi.org/10.1145/2676726.2676991

Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan, Frank Tip, and Youngil Choi.
2016. Type inference for static compilation of JavaScript. https://doi.org/10.1145/2983990.2984017

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and precise type checking
for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA (2017). https://doi.org/10.1145/3133872

Benjamin Chung. 2023. A type system for Julia. Ph. D. Dissertation. Northeastern University. https://arxiv.org/abs/2310.16866
Benjamin Chung, Francesco Zappa Nardelli, and Jan Vitek. 2019. Julia’s Efficient Algorithm for Subtyping Unions and

Covariant Tuples. In European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.4230/LIPIcs.
ECOOP.2019.24

Pierre-Louis Curien and Giorgio Ghelli. 1990. Coherence of subsumption. In Colloquium on Trees in Algebra and Programming
(CAAP). https://doi.org/10.1007/3-540-52590-4_45

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Symposium on Principles of
Programming Languages (POPL). https://doi.org/10.1145/582153.582176

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science (1987). https://doi.org/10.1016/0304-3975(87)90045-4
Ben Greenman, Fabian Muehlboeck, and Ross Tate. 2014. Getting F-Bounded Polymorphism into Shape. In Conference on

Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/2594291.2594308
Radu Grigore. 2017. Java Generics Are Turing Complete. In Symposium on Principles of Programming Languages (POPL).

https://doi.org/10.1145/3009837.3009871
Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. (1969).

https://doi.org/10.2307/1995158
John Hopcroft and Jeffrey Ullman. 1990. Introduction To Automata Theory, Languages, And Computation. Addison-Wesley.
Jason Z. S. Hu and Ondřej Lhoták. 2019. Undecidability of D<: And Its Decidable Fragments. Proc. ACM Program. Lang. 4,

POPL (2019). https://doi.org/10.1145/3371077
Atsushi Igarashi and Mirko Viroli. 2002. On Variance-Based Subtyping for Parametric Types. In European Conference on

Object-Oriented Programming (ECOOP). https://doi.org/10.1007/3-540-47993-7_19
Andrew Kennedy and Benjamin C. Pierce. 2007. On Decidability of Nominal Subtyping with Variance. In Foundations

and Developments of Object-Oriented Languages (FOOL). https://www.microsoft.com/en-us/research/publication/on-
decidability-of-nominal-subtyping-with-variance/

Kresten Krab Thorup andMads Torgersen. 1999. Unifying Genericity. In European Conference on Object-Oriented Programming
(ECOOP). https://doi.org/10.1007/3-540-48743-3_9

Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves. 2019. Decidable Subtyping for Path Dependent Types.
Proc. ACM Program. Lang. 4, POPL (2019). https://doi.org/10.1145/3371134

Julian Mackay, Alex Potanin, Jonathan Aldrich, and Lindsay Groves. 2020. Syntactically Restricting Bounded Polymorphism
for Decidable Subtyping. In Programming Languages and Systems (APLAS). https://doi.org/10.1007/978-3-030-64437-6_7

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1998. From System F to Typed Assembly Language. In Symposium
on Principles of Programming Languages (POPL). https://doi.org/10.1145/268946.268954

Artem Pelenitsyn, Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek. 2021. Type Stability in Julia: Avoiding
Performance Pathologies in JIT Compilation. Proc. ACMProgram. Lang. 5, OOPSLA (2021). https://doi.org/10.1145/3485527

Benjamin C. Pierce. 1992. Bounded Quantification is Undecidable. In Symposium on Principles of Programming Languages
(POPL). https://doi.org/10.1145/143165.143228

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

https://doi.org/10.1137/141000671
https://doi.org/10.1145/28697.28700
https://doi.org/10.1145/263699.263743
https://doi.org/10.1007/978-3-540-70592-5_2
https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/1069774.1069793
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3133872
https://arxiv.org/abs/2310.16866
https://doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://doi.org/10.1007/3-540-52590-4_45
https://doi.org/10.1145/582153.582176
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/2594291.2594308
https://doi.org/10.1145/3009837.3009871
https://doi.org/10.2307/1995158
https://doi.org/10.1145/3371077
https://doi.org/10.1007/3-540-47993-7_19
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://doi.org/10.1007/3-540-48743-3_9
https://doi.org/10.1145/3371134
https://doi.org/10.1007/978-3-030-64437-6_7
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/3485527
https://doi.org/10.1145/143165.143228


191:24 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Franc ois Pottier. 1998. A framework for type inference with subtyping. In International Conference on Functional Program-
ming (ICFP). https://doi.org/10.1145/289423.289448

Daniel Smith and Robert Cartwright. 2008. Java Type Inference is Broken: Can We Fix It?. In Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA). https://doi.org/10.1145/1449764.1449804

Ross Tate, Juan Chen, and Chris Hawblitzel. 2008. A Flexible Framework for Type Inference with Existential Quantification.
Technical Report MSR-TR-2008-184. https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-
type-inference-with-existential-quantification/

Ross Tate, Juan Chen, and Chris Hawblitzel. 2010. Inferable object-oriented typed assembly language. In Conference on
Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/1806596.1806644

Ross Tate, Alan Leung, and Sorin Lerner. 2011. Taming Wildcards in Java’s Type System. In Conference on Programming
Language Design and Implementation (PLDI). https://doi.org/10.1145/1993498.1993570

Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. 2005. Wild FJ. In Foundations of Object-Oriented Languages
(FOOL). https://homepages.inf.ed.ac.uk/wadler/fool/program/final/14/14_Paper.pdf

Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad Bracha, and Neal Gafter. 2004. Adding
Wildcards to the Java Programming Language. In Symposium on Applied Computing (SAC). https://doi.org/10.1145/
967900.968162

Valery Trifonov and Scott Smith. 1996. Subtyping constrained types. In Static Analysis Symposium (SAS). https://doi.org/10.
1007/3-540-61739-6_52

Stefan Wehr and Peter Thiemann. 2009. On the Decidability of Subtyping with Bounded Existential Types. In Programming
Languages and Systems (ESOP). https://doi.org/10.1007/978-3-642-10672-9_10

Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson, and Jan Vitek. 2018. Julia
Subtyping: A Rational Reconstruction. Proc. ACM Program. Lang. 2, OOPSLA (2018). https://doi.org/10.1145/3276483

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.

https://doi.org/10.1145/289423.289448
https://doi.org/10.1145/1449764.1449804
https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-type-inference-with-existential-quantification/
https://www.microsoft.com/en-us/research/publication/a-flexible-framework-for-type-inference-with-existential-quantification/
https://doi.org/10.1145/1806596.1806644
https://doi.org/10.1145/1993498.1993570
https://homepages.inf.ed.ac.uk/wadler/fool/program/final/14/14_Paper.pdf
https://doi.org/10.1145/967900.968162
https://doi.org/10.1145/967900.968162
https://doi.org/10.1007/3-540-61739-6_52
https://doi.org/10.1007/3-540-61739-6_52
https://doi.org/10.1007/978-3-642-10672-9_10
https://doi.org/10.1145/3276483

	Abstract
	1 Introduction
	2 Background on Julia
	3 Specification of Subtyping
	3.1 Declarative Subtyping
	3.2 Invertible Subtyping

	4 Undecidability of Julia subtyping
	4.1 System FP
	4.2 From FP to Julia

	5 Stratifying Existential Types for Julia-in-Practice
	5.1 Stratified Types
	5.2 Empirical Evaluation
	5.3 Stratified Subtyping

	6 Deciding Subtyping for Stratified Existential Types
	6.1 Backtracking Proof Search
	6.2 Marshalling Type Variables
	6.3 Directed Constraint Collection
	6.4 Constraint Solving
	6.5 Example of Constraint Collection and Solving
	6.6 Sound and Complete Subtyping Algorithm

	7 Related work
	8 Conclusion
	References

