
Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

5

Language Support for Generic
Programming in Object-Oriented
Languages: Design Challenges1

Julia Belyakova <julbel@sfedu.ru>
I. I. Vorovich Institute of Mathematics, Mechanics and Computer Science,

Southern Federal University,
105/42, B. Sadovaya st., Rostov-on-Don, 344006, Russia

Abstract. It is generally considered that object-oriented (OO) languages provide weaker
support for generic programming (GP) as compared with functional languages such as Haskell
or SML. There were several comparative studies which showed this. But many new object-
oriented languages have appeared in recent years. Have they improved the support for generic
programming? And if not, is there a reason why OO languages yield to functional ones in this
respect? In the earlier comparative studies object-oriented languages were usually not treated
in any special way. However, the OO features affect language facilities for GP and a style
people write generic programs in such languages. In this paper we compare ten modern object-
oriented languages and language extensions with respect to their support for generic
programming. It has been discovered that every of these languages strictly follows one of the
two approaches to constraining type parameters. So the first design challenge we consider is
“which approach is better”. It turns out that most of the explored OO languages use the less
powerful one. The second thing that has a big impact on the expressive power of a programming
language is language support for multiple models. We discuss pros and cons of this feature and
its relation to other language facilities for generic programming.

Keywords: object-oriented languages; generic programming; generics; types; constraints;
concepts; interfaces; Concept pattern; multiple models; concept-parameters

DOI: 10.15514/ISPRAS-2016-28(2)-1

For citation: Julia Belyakova. Language Support for Generic Programming in Object-
Oriented Languages: Design Challenges. Trudy ISP RAN/Proc. ISP RAS, Volume 28, Issue 2,
2016, pp. 5-32. DOI: 10.15514/ISPRAS-2016-28(2)-1

1 This paper is the extended version of the conference paper [1] accepted for the XX Brazilian
Symposium on Programming Languages.

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

6

1. Introduction
Almost all modern programming languages provide language support for generic
programming (GP) [2]. Some languages do it better than others. For example, Haskell
is generally considered to be one of the best languages for generic programming [3,
4], whereas mainstream object-oriented languages such as C# and Java are much less
expressive and have many drawbacks. There were several studies that compared
language support for generic programming in different languages [3–6]. However,
these studies do not make any difference between object-oriented and functional
languages. We argue that OO languages are to be treated separately, because they
support the distinctive OO features that pure functional languages do not, such as
inheritance, interfaces/traits, subtype polymorphism, etc. These features affect the
language design and a way people write generic programs in object-oriented
languages.
Several new object-oriented languages have appeared in recent years, for instance,
Rust, Swift, Kotlin. At the same time, several independent extensions have been
developed for the mainstream OO languages [7–10]. These new languages and
extensions have many differences, but all of them tend to improve the support for
generic programming. There is a lack of a careful comparison of the approaches and
mechanisms for generic programming in modern object-oriented languages. This
study is aimed to fill the gap: it gives a survey, analysis, and comparison of the
facilities for generic programming that the chosen OO languages provide. We identify
the dependencies between major language features, detect incompatible ones, and
point the properties that a language design should satisfy to be effective for generic
programming.

2. Main Ideas
Ten modern object-oriented languages and language extensions have been explored
in this study with respect to generic programming. We have found out that in the case
of OO languages there are exactly two approaches to a design of language constructs
for generic programming. We call the first one “constraints-are-types”, because under
this approach OO constructs such as interfaces or traits, which are usually used as
types in object-oriented programs, are also used to constrain type parameters in
generic programs. The second approach, “constraints-are-Not-types”, restricts OO
constructs to be used as types only, and provides separate language constructs for
constraining type parameters. Hence the first design challenge arises: is one of this
approaches better than another? Or the same expressive power can be achieved using
any of them? We answer these questions in Sec. 3. It turns out that the approaches
cannot be integrated together, and the second one is more expressive.
The second point covered in the paper in detail (in Sec. 4) is language support for
multiple models (by “model” we mean a way in which types satisfy constraints).
There are several questions related to multiple models:

1. Is it desirable to have multiple models of a constraint?

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

7

2. How can support for multiple models be provided with the approaches
discovered?

3. Why does not Haskell allow multiple models (instances of a type class)?
4. Is there a language design that reflects the support for multiple models better

than the existing ones?
The short answers are:

1. Yes, it is desirable.
2. It can be naturally provided with the second approach but not with the first

one.
3. Because of type inference.
4. Yes, there is.

In conclusion, we present a modified version of the well-known table [3, 5] showing
the levels of language support for the features important for generic programming.
Table 1 provides information on all of the object-oriented languages considered,
introduces some new features, and demonstrates the relations between the features.

3. Two Approaches to Constraining Type Parameters
This section provides a survey of language constructs for generic programming in
several modern object-oriented programming languages as well as some language
extensions. All of the languages we explored adopt one of the two approaches:

1. Interface-like constructs, which are normally used as types in object-oriented
programming, are also used to constrain type parameters. By “interface-like
constructs” we mean, in particular, C#/Java interfaces, Scala traits, Swift
protocols, Rust traits. Fig. 1 shows a corresponding example in C#:
IPrintable interface acts as the type of xs in PrintArr, whereas in the function
InParens<T> it is used to constrain the type parameter T.

2. For constraining type parameters a separate language construct is provided;
such construct cannot be used as a type. We will see some examples in
Sec. 3-2.

Sec. 3-1 analyses the languages of the first category; Sec. 3-2 is devoted to the second
one. In Sec. 3-3 we compare both approaches and answer the question “Which one is
better if any?”.

interface IPrintable { string Print(); }

void PrintArr(IPrintable[] xs)
{ foreach (var x in xs)
 Console.WriteLine("{0}\n", x.Print()); }

string InParens<T>(T x) where T : IPrintable
{ return "(" + x.Print() + ")"; }

Fig. 1. An ambiguous role of C# interfaces

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

8

3.1 Languages with “Constraints-are-Types” Philosophy
C# and Java are probably the best-known programming languages in this category,
with interfaces being used to constrain type parameters. In comparison with other
languages that support generic programming, these ones are much less expressive and
have several considerable drawbacks.
Lack of retroactive interface implementation. After a type had been defined, it
cannot implement any new interface. A consequence is that generic code with
constraints on type parameters can only be instantiated with types originally designed
to satisfy these constraints. It is impossible to adapt types afterwards, even if they
semantically conform the constraints.

interface IComparable<T> { int CompareTo(T other); }

class SortedSet<T> where T : IComparable<T> { ... }

Fig. 2. The IComparable<T> interface in C#

Drawbacks of F-bounded polymorphism. F-bounded polymorphism [11] allows
“recursive” constraints (F- constraints) on type parameters in the form T : I<T>,
where T is a type parameter, I<> is a generic interface. Such kind of constraints solves
the binary method problem [12]: Fig. 2 demonstrates a corresponding C# [13]
example. The type parameter T in the interface IComparable<T> pretends to be a type
that implements this interface. This is indeed the case for the class SortedSet<T> due
to the constraint T : IComparable<T>, so the method T.CompareTo(T) is like a binary
function for comparing elements of type T. But the semantics of IComparable<T>
itself has nothing to do with binary methods. One could easily write some class Foo
implementing IComparable<Bar>, and thus the semantics of comparing two Bars
would be broken. Another shortcoming of the F-bounded polymorphism is that code
with recursive constraints is rather cumbersome and difficult to understand. Yet, as
we will see, the F-bounded polymorphism is not the only solution to the binary
method problem. More detailed discussion on the pitfalls of the F-bounded
polymorphism can be found in [9, 14].
Lack of associated types [14,15]. Types that are logically related to some entity are
often called associated types of the entity. For instance, types of edges and vertices
are associated types of a graph. There is no specific language support for associated
types in C# and Java: such types are expressed in generic code in the form of extra
type parameters.
Lack of constraints propagation [14,15]. Despite the fact that the definition of the
class SortedSet<T> in Fig. 2 already contains a constraint on the type parameter T, in
the baz<T> function defined below the constraint on T is to be placed as well.
void baz<T>(SortedSet<T> s) where T : IComparable<T> { ... }
Although baz<T> takes a value of type SortedSet<T>, so it is clear from the signature
of the function that T must be comparable, the code would not compile without an

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

9

explicit constraint. In other words, a compiler does not propagate the constraints
implied by formal parameters, this is a programmer’s burden.

interface ITerm<Tm> { IEnumerable<Tm> Subterms(); ... }

interface IEquation<Tm, Eqtn, Subst> where Tm : ITerm<Tm>
 where Eqtn : IEquation<Tm, Eqtn, Subst>
 where Subst : ISubstitution<Tm, Eqtn, Subst>
{ Subst Solve();
 IEnumerable<Eqtn> Split(); ... }

interface ISubstitution<Tm, Eqtn, Subst> where Tm : ITerm<Tm>
 where Eqtn : IEquation<Tm, Eqtn, Subst>
 where Subst : ISubstitution<Tm, Eqtn, Subst>
{ Tm SubstituteTm(Tm);
 IEnumerable<Eqtn> SubstituteEq (IEnumerable<Eqtn>); ... }

Fig. 3. The C# interfaces for unification algorithm

Some of the drawbacks mentioned above have been successfully eliminated in the
modern object-oriented languages. We briefly examine language facilities for generic
programming in several OO languages with the “constraints-are-types” philosophy in
the following subsections. But there is a problem common for all languages of this
category, the problem of multi-type constraints (constraints on several types). Note
that an interface (or a similar language construct) describes properties, an interface of
a single type that implements/extends it. This has inevitable consequence: multi-type
constraints cannot be expressed naturally. Consider a generic unification
algorithm [16]: it takes a set of equations between terms (symbolic expressions), and
returns the most general substitution which solves the equations. So the algorithm
operates on three kinds of data: terms, equations, substitutions. A signature of the
algorithm might be as follows:
Subst Unify<Tm, Eqtn, Subst>(IEnumerable<Eqtn>)
But a bunch of functions has to be provided to implement the algorithm: Subterms :
Tm → Ienumerable<Tm>,
Solve : Eqtn → Subst, SubstituteTm : Subst × Tm → Tm,
SubstituteEq : Subst × Ienumerable<Eqtn> → IEnumarable<Eqtn>, and some others.
All these functions are needed for unification at once, hence it would be convenient
to have a single constraint that relates all the type parameters and provides the
functions required.
Subst Unify<Tm, Eqtn, Subst>
 (IEnumerable<Eqtn>) where <single constraint>
But in C#/Java the only thing one can do2 is to define three different interfaces
describing a term, equation and substitution, and then separately constrain every type
parameter with a respective interface. Fig. 3 shows the interface definitions. To set

2 The Concept design pattern can also be used, but it has its own drawbacks. We will discuss
concept pattern later, in Sec. 4-3-2.

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

10

up a relation between mutually dependent interfaces, three type parameters are used:
Tm for terms, Eqtn for equations, and Subst for substitution. Moreover, the
parameters are repeatedly constrained with the appropriate interfaces in every
interface definition. These constraints are to be stated in a signature of the unification
algorithm as well:
Subst Unify<Tm, Eqtn, Subst> (IEnumerable<Eqtn>)
 where Tm : ITerm<Tm>
 where Eqtn : IEquation<Tm, Eqtn, Subst>
 where Subst : ISubstitution<Tm, Eqtn, Subst>
There is one more thing to notice here — interfaces are used in both roles in the same
piece of code: the IEnumerable<Eqtn> interface is used as a type, whereas other
interfaces in the where sections are used as constraints.

interface Equatable<T> { fun equal (other: T) : Boolean
 fun notEqual(other: T): Boolean
 { return !this.equal(other) } }

class Ident (name : String) : Equatable<Ident> {
 val idname = name.toUpperCase()
 override fun equal (other: Ident) : Boolean
 { return idname == other.idname } }

Fig. 4. Interfaces and constraints in Kotlin

3.1.1 Interfaces in Ceylon and Kotlin
In contrast to C#, Ceylon [17] and Kotlin [18] interfaces support default method
implementation, so Java 8 [19] interfaces do. This is a useful feature for generic
programming. For instance, one can define an interface for equality that provides a
default implementation for the inequality operation. Fig. 4 demonstrates
corresponding Kotlin definitions: the Ident class implements the interface
Equatable<Ident> that has two methods, equal and notEqual; as long as notEqual has
a default implementation in the interface, there is no need to implement it again in the
definition of the Ident class.

shared interface Comparable<Other> of Other
 given Other satisfies Comparable<Other>
{ shared formal Integer compareTo(Other other);
 shared Integer reverseCompareTo(Other other)
 { return other.compareTo(this); } }

Fig. 5. The use of “self type” in Ceylon interfaces

In addition to default method implementations, the Ceylon language also allows a
type parameter to be declared as a self type. An example is shown in Fig. 5. In the
definition of the Comparable<Other> interface the declaration of Other explicitly
requires Other to be a self type of the interface, i. e. a type that implements this

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

11

interface. Because of this the reverseCompareTo method can be defined: both the
other and this values are of type Other, with the Other implementing
Comparable<Other>, so the call other.compareTo(this) is perfectly legal.

3.1.2 Scala Traits
Similarly to advanced interfaces in Java 8, Ceylon, and Kotlin, Scala traits [6,20]
support default method implementations. They can also have abstract type members,
which, in particular, can be used as associated types [21]. Just as in
C#/Java/Ceylon/Kotlin, type parameters (and abstract types) in Scala can be
constrained with traits and supertypes (upper bounds): the latter constraints are called
subtype constraints. But, moreover, they can be constrained with subtypes (lower
bounds), which are called supertype constraints. None of the languages we discussed
so far support supertype constraints nor associated types. Another important Scala
feature, implicits [20], will be mentioned later in Sec. 4-1 with respect to the Concept
design pattern.

struct Point { x: i32, y: i32, }
...
impl Point {
 fn moveOn(&self, dx: i32, dy: i32) -> Point
 { Point {x: self.x + dx, y: self.y + dy } } }
...
impl Point {
 fn reflect(&self) -> Point { Point {x: -self.x, y: -self.y} } }
...
let p1 = Point {x: 4, y: 3};
let p2 = p1.moveOn(1, 1); let p3 = p1.reflect();

Fig. 6. Point struct and its methods in Rust

trait Eqtbl { fn equal(&self, that: &Self) -> bool;
 fn not_equal(&self, that: &Self) -> bool { !self.equal(that) } }
trait Printable { fn print(&self); }
...
impl Eqtbl for i32 {
 fn equal (&self, that: &i32) -> bool { *self == *that } }
...
struct Pair<S, T>{ fst: S, snd: T }
...
impl <S : Eqtbl, T : Eqtbl> Eqtbl for Pair<S, T> {
 fn equal (&self, that: &Pair<S, T>) -> bool
 { self.fst.equal(&that.fst) && self.snd.equal(&that.snd) } }

Fig. 7. An example of using Rust traits

3.1.2 Rust Traits
The Rust language [22] is quite different from other object-oriented languages. There
is no traditional class construct in Rust, but instead it suggests structs that store the

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

12

data, and separate method implementations for structs. An example is shown
in Fig. 63: two impl Point blocks define method implementations for the Point struct.
If a function takes the &self4 argument (as moveOn), it is treated as a method. There
can be any number of implementation blocks, yet they can be defined at any point
after the struct declaration (even in a different module). This gives a huge advantage
with respect to generic programming: any struct can be retroactively adapted to
satisfy constraints.
Constraints in Rust are expressed using traits. A trait defines which methods have to
be implemented by a type similarly to Scala traits, Java 8 interfaces, and others. Traits
can have default method implementations and associated types; besides that, the self
type of the trait is directly available and can be used in method definitions. Fig. 75
demonstrates an example: the Eqtbl trait defining the equality and inequality
operations. Note how support for the self type solves the binary method problem (here
equal is a binary method): there is no need in extra type parameter that “pretends” to
be a self type, because the self type Self is already available.
Method implementations in Rust can be probably thought of similarly to .NET
“extension methods”. But in contrast to .NET6, types in Rust also can retroactively
implement traits in impl blocks as shown in Fig. 7: Eqtbl is implemented by i32 and
Pair<S, T>. The latter definition also demonstrates a so-called type-conditional
implementation: pairs are equality comparable only if their elements are equality
comparable. The constraint <S : Eqtbl... is a shorthand, it can be declared in a where
section as well.
There is no struct inheritance and subtype polymorphism in Rust. Nevertheless, as
long as traits can be used not only as constraints but also as types, a dynamic dispatch
is provided through a feature called trait objects. Suppose i32 and f64 implement the
Printable trait from Fig. 7. Then the following code demonstrates creating and use of
a polymorphic collection (the type of the polyVec elements is a reference type):
let pr1 = 3; let pr2 = 4.5; let pr3 = -10;
let polyVec: Vec<&Printable> = vec![&pr1, &pr2, &pr3];
for v in polyVec { v.print(); }

3.1.3 Swift Protocols
Swift is a more conventional OO language than Rust: it has classes, inheritance, and
subtype polymorphism. Classes can be extended with new methods using extensions

3 Some details were omitted for simplicity. To make the code correct, one has to add
#[derive(Debug,Copy,Clone)] before the Point definition.
4 The “&” symbol means that an argument is passed by reference.
5 Some details were omitted for simplicity. The following declaration is to be provided to
make the code correct: #[derive(Copy, Clone)] before the definition struct Pair<S : Copy, T :
Copy>. Yet the type parameters of the impl for pair must be constrained with Copy+Equatable.
6 Similarly to .NET, Kotlin supports extending classes with methods and properties, but
interface implementation in extensions is not allowed.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

13

that are quite similar to Rust method implementations. Instead of interfaces and traits
Swift provides protocols. They cannot be generic but support associated types and
same-type constraints, default method implementations through protocol extensions,
and explicit access to the self type; due to the mechanism of extensions, types can
retroactively adopt protocols. Fig. 8 illustrates some examples: the Equatable
protocol extended with a default implementation for notEqual (pay attention to the
use of the Self type); the contains<T> generic function with a protocol constraint on
the type parameter T; an extension of the type Int that enables its conformance to the
Printable protocol; the Container protocol with the associated type ItemTy; the
allItemsMatch generic function with the same-type constraint on types of elements of
two containers, C1 and C2.

protocol Equatable { func equal(that: Self) -> Bool; }
extension Equatable { func notEqual(that: Self) -> Bool
 { return !self.equal(that) } }
func contains<T : Equatable> (values: [T], x: T) -> Bool { ... }

protocol Printable { func print(); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allItemsMatch<C1: Container, C2: Container
 where C1.ItemTy == C2.ItemTy, C1.ItemTy: Equatable> ...

Fig. 8. Protocols and their use in Swift

3.2 Languages with “Constraints-are-Not-Types” Philosophy
Most of the languages in this category were to some extent inspired by the design of
Haskell type classes [22]. For defining constraints these languages suggest new
language constructs, which are usually second-class citizens7. These constructs have
no self types and cannot be used as types, they describe requirements on type
parameters in an external way; therefore, retroactive satisfaction of constraints
(retroactive modeling) is automatically provided. Besides retroactive modeling, an
integral advantage of such kind of constructs is that multi-type constraints can be
easily and naturally expressed using them; yet there is no semantic ambiguity which
arises when the same construct, such as C # interface, is used both as a type and
constraint, as in the example below:
void Sort<T>(ICollection<T>) where T : IComparable<T>
Here ICollection<T> and IComparable<T> are generic interfaces, but the former one
is used as a type whereas the latter one is used as a constraint.

interface EQ { boolean eq(This that);

7 Second-class citizens cannot be assigned to variables, passed as arguments, returned from
functions.

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

14

 boolean notEq(This that); }
abstract implementation EQ [EQ] {
 boolean notEq(This that) { return !this.eq(that); } }

boolean contains<X>(List<X> list, X x) where X implements EQ { ... }

abstract class Expr {...} class IntLit extends Expr {...}
class PlusExpr extends Expr { Expr left; Expr right; ... }
...
implementation EQ [Expr] { boolean eq(Expr that) { return false; } }
implementation EQ [PlusExpr]{ boolean eq(PlusExpr that) {...} }

interface UNIFY [Tm, Eqtn, Subst] {
 receiver Tm { IEnumerable<Tm> Subterms(); ... }
 receiver Eqtn { IEnumerable<Eqtn> Split(); ... }
 receiver Subst { Tm SubstituteTm(Tm); ... } }
Subst Unify<Tm, Eqtn, Subst>(Enumerable<Eqtn>)
 where [Tm, Eqtn, Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGI

3.2.1 JavaGI Generalized Interfaces
JavaGI [7] generalized interfaces represent a kind of confluence of both “constraints-
are-types” and “constraints-are-not-types” philosophies. Interfaces such as
PrettyPrintable defined below are called single-parameter interfaces. They describe
interfaces of a single type and can be used both as types and constraints.
interface PrettyPrintable { String prettyPrint(); }
Such interfaces have explicit access to the self type named This; an example is shown
in Fig. 9, where the self type is used in the interface EQ. There is no direct support
for default method implementations in JavaGI, but abstract implementation
definitions can be used for this purpose8. For example, the notEq method of EQ
(Fig. 9) is implemented in such a way. Generalized interfaces can be implemented
retroactively in implementation blocks. They do not support associated types but can
be generic; moreover, implementations can be generic as well, and the support for
type-conditional interface implementation is provided:
implementation<S, T> EQ [Pair<S, T>] where S implements EQ
 where T implements EQ { ... }
Besides single-parameter interfaces, there are multi-headed generalized interfaces
that adopt several features from Haskell type classes [24] and describe interfaces of
several types. There is no self type in a multi-headed interface; therefore, it cannot be
used as a type, it is designed to be used as a constraint only. An example of multi-
headed interface is shown in Fig. 9: the UNIFY interface contains all the functions
required by the unification algorithm considered earlier; the requirements on three

8 The design of JavaGI we discuss here goes back to 2011 when default method
implementations were not supported in Java. With Java 8 this task could probably be solved in
a more elegant way.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

15

types (term, equation, substitution) are defined at once in a single interface. Note how
succinct is this definition as compared with the one in Fig. 3.

concept InputIterator<Iter> { type value; ... }
concept Monoid<T> { fun identity_elt() -> T;
 fun binary_op(T, T) -> T; };
model Monoid<int>
{ fun identity_elt() -> int@ { return 0; } ... };

fun accumulate<Iter> where { InputIterator<Iter>,
 Monoid<InputIterator<Iter>.value> }
(Iter first, Iter last) -> InputIterator<Iter>.value
{ let init = identity_elt(); ... }

Fig. 10. Concepts and their use in G

3.2.2 Language G and C++ concepts
Concept as an explicit language construct for defining constraints on type parameters
was initially introduced in 2003 [25]. Several designs have been developed since that
time [26–28]; in the large, the expressive power of concepts is rather close the Haskell
type classes [4]. Concepts were designed to solve the problems of unconstrained C++
templates [14, 29]; they were expected to be included in C++0x standard, but this did
not happen. A new version of concepts, Concepts Lite (C++1z) [30], is under way
now. The language G declared as “a language for generic programming” [8] also
provides concepts that are very similar to the C++0x concepts. G is a subset of C++
extended with several constructs for generic programming. For “C++ concepts” we
use the G syntax in this paper.
Similarly to a type class, a concept defines a set of requirements on one or more type
parameters. It can contain function signatures that may be accompanied with default
implementations, associated types, nested concept-requirements on associated types,
and same-type constraints. A concept can refine one or more concepts, it means that
the refining concept includes all the requirements from the refined concepts.
Refinement is very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called concept-based
overloading is supported: one can define several versions of an algorithm/class that
have different constraints, and then at compile time the most specialized version is
chosen for the given instance. The C++ advance algorithm for iterators is a classic
example of concept-based overloading application.
It is said that a type (or a set of types) satisfies a concept if an appropriate model of
the concept is defined for this type (types). Model definitions are independent from
type definitions, so the modeling relation is established retroactively; models can be
generic and type-conditional. Fig. 10 illustrates some examples: the
InputIterator<Iter> concept with the associated type of elements value; the
Monoid<T> concept and its model for the type int; the accumulate<Iter> generic
function with two constraints, on the type of the iterator and on the associated type of

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

16

this iterator. Note how identity_elt is called in accumulate: in contrast to the languages
from the previous section, identity_elt is available in the body of accumulate at the
top-level; this may lead to some inconvenience even if the autocomplete feature is
supported in IDE.

3.2.3 C# with concepts
In the C#cpt project [9] (C# with concepts) concept mechanism integrates with
subtyping: type parameters and associated types can be constrained with supertypes
(as in basic C#) and also with subtypes (as in Scala). In contrast to all of the languages
we discussed earlier, C#cpt allows multiple models of a concept in the same scope.

concept CEquatable[T] { bool Equal(T x, T y);
 bool NotEqual(T x, T y) { return !Equal(x, y); } }

interface ISet<T> where CEquatible[T] { ... }
bool Contains<T>(IEnumerable<T> values, T x)
 where CEquatable[T] using CEq {... if (cEq.Equal(...) ...}

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

Fig. 11. Concepts and models in C#cpt

Some examples are shown in Fig. 11: the CEquatable[T] concept with the Equal
signature and default implementation of NotEqual, the generic interface ISet<T> with
the concept-requirement on the type parameter T, and two models of CEquatable[]
for the type String — for case-sensitive and case-insensitive equality comparison. The
first model is marked as a default model9: it means that this model is used if a model
is not specified at the point of instantiation. For instance, in the following code
StringEqCaseS is used to test equality of strings in s1.
ISet<String> s1 = ...;
ISet<String>[using StringEqCaseIS] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types
Note that s1 and s2 have different types because they use different models of
CEquatible[String]. This property is called “constraints-compatibility” in [9], but we
will refer to it as “models-consistency”. One more interesting thing about C#cpt:
concept-requirements can be named. In the Contains<T> function (Fig. 11) the name
cEq is given to the requirement on T; this name is used later in the body of
Contains<T> to access the Equal function of the concept. It is also worth mention that
the interface IEnumerable<T> is used as a type along with the concept CEquatable[T]
being used as a constraint; thus, the role of interfaces is not ambiguous any more,
interfaces and concepts are independently used for different purposes.

9 The default model can be generated automatically for a type if the type conforms to a concept,
i.e. it provides methods required by the concept.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

17

constraint Eq[T] { boolean T.equals(T other); }
constraint GraphLike[V, E] { V E.source(); ... }

interface ISet<T> where CEquatible[T] { ... }
bool Contains<T>(IEnumerable<T> values, T x)
 where CEquatable[T] using CEq {... if (cEq.Equal(...) ...}

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

Fig. 12. Constraints and models in Genus

3.2.4 Constraints in Genus
Like G concepts and Haskell type classes, constraints in Genus [10] (an extension for
Java) are used as constraints only. Fig. 12 demonstrates some examples: the Eq[T]
constraint, which is used to constrain the T in the Set[T] interface; the model of
Eq[String] for case-insensitive equality comparison; the multi-parameter constraint
GraphLike[V,E], and the type-conditional generic model DualGraph[V,E]. Methods
in Genus classes/interfaces can impose additional constraints:
interface List[E] { boolean remove(E e) where Eq[E]; ... }
Here the List[] interface can be instantiated by any type, but the remove method can
be used only if type E of the elements satisfies the Eq[E] constraint. This feature is
called model genericity.
Just as C#cpt, Genus supports multiple models and automatic generation of the natural
model, which is the same thing as the default model in C#cpt. Due to this, the following
code causes a static type error (we saw the same example in C#cpt):
Set[String] s1 = ...;
Set[String with CIEq] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types
In Genus this feature is called model-dependent types. An important note is to be
made here: in contrast to true dependent types that depend on values, model-
dependent types depend on models, which are compile-time artefacts. So the model-
dependent types are just as dependent as generic types are type-dependent types.
As well as concept-requirements in C#cpt, constraint-requirements in Genus can be
named; the example is shown in Fig. 12: g is a name of the GraphLike[V,E] constraint
required by the DualGraph[V,E] model. Because function signatures inside
constraints are declared with an explicit receiver type (in a style close to JavaGI),
such as the type T in the Eq[T] constraint, syntax of calls to functions in the case of
named models is _.(g.sink)(), not g.sink(_).

3.3 Which Philosophy Is Better If Any?
It is time to find out which approach is better. Taking into consideration what we
explored in Sec. 3-1 and Sec. 3-2, we draw a conclusion that there are only two

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

18

language features important for generic programming that cannot be incorporated in
a language together:

1. the use of a construct both as a type and constraint;
2. natural support for multi-type constraints.

Languages with “constraints-are-types” philosophy support the first feature but not
the second, languages with “constraints-are-Not-types” philosophy vice versa10. Can
we determine one feature that is more important?
It was shown in the study [31] that in practice interfaces that are used as constraints
(such as IComparable<T> in C# or Comparable<X> in Java) are almost never used
as types: authors had checked about 14 millions lines of Java code and found only
one such example, which could be even rewritten and eliminated. According to [31],
the same observation also holds for the code in Ceylon. It is hard to imagine any
useful “constraint-and-type” example besides the IPrintable interface from Fig. 1. In
those rare cases when this could happen, it is possible to provide a lightweight
language mechanism for automatic generation of one construct from another. For
example, single-parameter Genus constraints with some restrictions could be
translated to Java interfaces, with the other direction being easier.
At the same time, multi-type constraints, which can be so naturally expressed under
the “constraints-are-Not-types” approach, have rather awkward and cumbersome
representation in the “constraints-are-types” approach as we have seen in Sec. 3-1.
Language support for multiple models is also a problem in the latter approach: it is
considered in detail in the next section. All other language facilities we discussed
could be supported under any approach. Therefore, we claim that with respect to
generic programming the “constraints-are-Not-types” approach is preferable. An
additional benefit is that it eliminates the ambiguity in semantics of the interface-like
constructs currently used for different purposes in OO languages.

4. Single Model versus Multiple Models
For simplicity, in this part of the paper we call “constraint” any language construct
that is used to describe constraints, while a way in which types satisfy the constraints
we call “model”. We have seen in the previous section that most of the languages
allow having only one, unique model of a constraint for the given set of types; only
C#cpt [9] and Genus [10] support multiple models11. And indeed this makes sense for
the languages with “constraints-are-types” philosophy, because it is not clear what to
do with types that could implement interfaces (or any other similar constructs) in
several ways. But how does this affect generic programming?

10 JavaGI seems to support both of them, but it actually provides different constructs for
different purposes: single-parameter interfaces are more like Rust traits or Swift protocols,
whereas multi-headed interfaces are similar to concepts and type classes; the latter cannot be
used as types.
11 G [7] allows multiple models only in different lexical scopes.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

19

It turns out that sometimes it is desirable to have multiple models of a constraint for
the same set of types. The example of string sets with case-sensitive and case-
insensitive equality comparisons we saw earlier is only one of such examples; another
one is the use of different orderings on numbers, yet different graph implementations,
and so on. Thus, in respect of generic programming, the absence of multiple models
is rather a problem than a benefit. Without extending the language the problem of
multiple models can be solved in two ways, and both of them have serious drawbacks.

1. Using the Adapter pattern. If one wants the type Foo to implement
IComparable<Foo> in a different way, an adapter of Foo, the Foo1 that
implements IComparable<Foo1> can be created. This adapter then can be
used instead of Foo whenever the Foo1-style comparison is required. An
obvious shortcoming of this approach is the need to repeatedly wrap and
unwrap Foo values; in addition, a code becomes cumbersome.

2. Using the Concept design pattern [20], which is considered in Sec. 4-1.
As we have discovered in Sec. 3-3, languages with the “constraints-are-types”
philosophy are in the large less expressive than the ones with the “constraints-are-
Not-types” philosophy. But may languages such as C#cpt and Genus, which are in the
“constraints-are-Not-types” category and support multiple models at the language
level, be considered as the best languages for generic programming? Or we can
imagine a language with a better design? We discuss this question in Sec. 4-3. And
one more question: if language support for multiple models is a good idea, then why
does not Haskell [24] allow multiple instances of a type class? This issue is
considered in Sec. 4-2.

4.1 Concept Pattern

// F-bounded polymorphism
interface IComparable<T> { int CompareTo(T other); }
void Sort<T>(T[] values) where T : IComparable<T> { ... }
class SortedSet<T> where T : IComparable<T> { ... }

// Concept Pattern
interface IComparer<T> { int Compare(T x, T y); }
void Sort<T>(T[] values, IComparer<T> cmp) { ... }
class SortedSet<T> { private IComparer<T> cmp; ...
 public SortedSet(IComparer<T> cmp) { ... } ... }

Fig. 13. The use of the Concept design pattern in C#

The Concept design pattern is suitable for programming languages with the
“constraints-are-types” philosophy. It eliminates two problems:

1. Firts, it enables retroactive modeling of constraints, which is not supported
in languages such as C#, Java, Ceylon, Kotlin, or Scala.

2. Second, it allows defining multiple models of a constraint for the same set
of types.

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

20

The idea of the Concept pattern is as follows: instead of constraining type parameters,
generic functions and classes take extra arguments that provide a required
functionality — “concepts”. Fig. 13 shows an example: in the case of the Concept
pattern the F-constraint T : IComparable<T> is replaced with an extra argument of
the type IComparer<T>. The IComparer<T> interface represents a concept of
comparing: it describes interface of an object that can compare values of type T. As
long as one can define several classes implementing the same interface, different
“models” of the IComparer<T> “concept” can be passed into Sort<T> and
SortedSet<T>.
This pattern is widely used in generic libraries of mainstream object-oriented
languages such as C# and Java; it is also used in Scala. Due to implicits [6,20], the
use of the Concept pattern in Scala is a bit easier: in most cases an appropriate
“model” can be found by a compiler implicitly, so there is no need to explicitly pass
it at a call site12. Nevertheless, the pattern has two substantial drawbacks. First of all,
it brings run-time overhead, because every object of a generic class with constraints
has at least one extra field for the “concept”, while constrained generic functions take
at least one extra argument. The second drawback, which we call models-
inconsistency, is less obvious but may lead to very subtle errors. Suppose we have s1
of type HashSet<String> and s2 of the same type, provided that s1 uses case-sensitive
equality comparison, s2 — the case-insensitive one. Thus, s1 and s2 use different,
inconsistent models of comparison. Now consider the following function:
static HashSet<T> GetUnion<T>(HashSet<T> a, HashSet<T> b)
{ var us = new HashSet<T>(a, a.Comparer);
 us.UnionWith(b); return us; }
Unexpectedly, the result of GetUnion(s1, s2) could differ from the result of
GetUnion(s2, s1). Despite the fact that s1 and s2 have the same type, they use different
comparers, so the result depends on which comparer was chosen to build the union.
Recall that in C#cpt and Genus models are part of types; therefore, a similar situation
causes the static type error. But in the case of the Concept pattern models-consistency
cannot be checked at compile time.

4.2 Instance Uniqueness in Haskell
Type classes in Haskell [23] provide the support for ad hoc polymorphism (function
overloading). Like concepts and constraints, they define functions available for some
types. For instance, a type class for equality comparison is defined in Haskell as
follows:
class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
 x /= y = not (x == y)

12 Scala is often blamed for its complex rules of implicits resolution: sometimes it is not clear
which implicit object is to be used.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

21

It contains a function signature for the equality operator ==, and provides a default
implementation for the inequality operator /=. Instances (models) of this type class
can be retroactively defined for types. For example, an instance for Int, a type-
conditional instance for lists, and so on.
instance Eq Int where … -- (==) implementation
instance Eq a => Eq [a] where … -- (==) implementation
As long as type classes support ad hoc polymorphism, they are “globally transparent”.
If a function is a part of some type class, every time the name of this function is used,
a compiler knows that an instance of the corresponding type class must be provided.
Multiple instances of a type class for the same set of types are not allowed in Haskell,
and there is a strong reason for that: type inference. Consider the following function
definition:
foo xs ys = if xs == ys then xs else xs ++ ys
In Haskell such definition is valid and its type can be inferred. It is Eq a => [a] → [a]
→ [a]13. Inference succeeds, because a compiler knows the following facts:

 as long as (++) has the type [a] → [a] → [a], xs and ys are lists;
 there is an instance of Eq for lists: Eq a => Eq [a].

If there were no Eq a => Eq [a] instance available, type checking would fail.
Suppose that multiple instances of a type class are allowed. What to do with type
inference of the foo in this case? To check whether there is at least one instance Eq [a]
in the scope? But probably not all Eq [a] instances require Eq a, should not the type
of the foo be changed in this case to the type Eq [a] => [a] → [a] → [a]?
Now look at the following code:
class Eq a => Baz a where
 bar :: a -> Int
useBar xs ys = if length xs > length ys then bar xs - bar ys
 else bar ys - bar xs
If instances are uniquely defined, type checker just checks if there is an instance Eq
[a] that implies Baz [a] (xs and ys are inferred to be lists because length has the type
[a] → Int). But if there are multiple Eq [a] instances, then every Baz [a] instance must
specify which Eq [a] instance it uses. It can even be the case that there is a Baz [a]
instance for one Eq [a], but not for another one. Therefore, at the point of the useBar
definition a compiler has no idea whether there is an error of missed Baz [a] instance
or not, because it knows nothing about the instance that might be used in a call to
useBar. This information is available only at the point of the actual call, not the
function definition.
Note that even with the OverlappingInstances extension for Haskell, multiple models
in a sense we discuss in the paper are not supported. This extension indeed allows
having in a scope several instances that match the constraints deduced for code. But
there must be only one, the most specialised instance among them that compiler can

13 [a] is a type of generic list, it is a notation for Data.List a.

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

22

select unambiguously (according to some rules) at the point of the code definition.
Again, not at the call site — at the point of definition. Thus, a user of the code still
cannot choose between instances, an instance is already selected by a compiler. Thus,
Haskell sacrifices language support for multiple models for the sake of type inference.
It is a strong argument for Haskell users, but in the case of the most object-oriented
programming languages, which usually do not permit omitting type annotations of
function arguments as well as constraints on type parameters, there is no need to
prohibit multiple models in OO languages.

4.3 Parameters versus Predicates
So far we have found out that languages with “constraints-are-Not-types” philosophy
may potentially provide better support for generic programming compared to other
languages, especially if they also allow multiple models definition. We have seen
only two languages with such properties, C#cpt [9] and Genus [10], and there is an
essential shortcoming in the design of both of them: constraints on type parameters
are declared in “predicate-style” rather than “parameter-style”. For example, consider
the following Genus definition [10]:
Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],
 OrdRing[W], Hashable[V] { ... }
SSSP[V,E,W] is a function for Dijkstras single-source shortest-path algorithm, with
the GraphLike[V,E], Weighted[E,W], OrdRing[W], and Hashable[V] being
constraints on type parameters. The constraints look as if they are predicates on types;
and if they were predicates, this function would probably be well-designed. For
example, in Haskell, G, C#, Java, Rust, and many other languages, where only one
model of a constraint is allowed for the given set of types, constraints on type
parameters are indeed predicates: types either satisfy the constraint (if they have a
model that is unique) or not. But in Genus and C#cpt constraints are not predicates,
they are actually parameters, as long as different models of a constraint can be used.
In the worst case a call to the SSSP[V,E,W] function would be as follows:
...pathFromX = SSSP[MyVert, MyEdge, Double
 with MyGrLike with MyEdgeDW
 with DescDOR with MyVerHash](x);
Whereas in the best case:
...pathFromX = SSSP[MyVert, MyEdge, Double](x);
Note that edge and weight types cannot be deduced, because they are determined by
the models of the constraints, not by the vertex x itself. It is easy to imagine that the
models of edge weighing (Weighted[E,W]) and its ordered ring (OrdRing[W]) would
often vary, so in many cases a call to SSSP[V,E,W] is likely to look like this:
...pathFromX = SSSP[MyVert, MyEdge, Double
 with MyEdgeDW with DescDOR](x);
This is not very bad but is also not good enough.

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

23

If look again at the SSSP algorithm one could notice that it really depends on three
things: a source vertex, a model of a weighed graph which this vertex belongs to, and
a model of hashing. Furthermore, at the level of the SSSP signature the type E of
edges does not matter, we are interested in the model of weighed graph as a whole.
Taking into account this ideas, we can rewrite the SSSP in the following way:
constraint WeighedGraph[V,E,W]
 extends GraphLike[V,E], Weighted[E,W], OrdRing[W] {}
Map[V,W] SSSP[V,E,W](V s)
 where WeighedGraph[V,E,W], Hashable[V] { ... }
Then a call to SSSP also becomes better:
...pathFromX = SSSP[MyVert, MyEdge, Double with MyWGr](x);
Nevertheless, we believe that in the case of multiple models the “predicate-style”
syntax of constraints is misleading and makes it more difficult to write and call
generic code. We suggest that the design of constraints has to be maintained in the
“parameter-style”. One example of such design is provided by the extension for the
OCaml language — modular implicits [32]; it is briefly discussed in Sec. 4-3-1. A
sketch of the “parameter-style” design of constraints for object-oriented languages is
presented in Sec. 4-3-2.

4.3.1 Modular Implicits in OCaml
In the “modular implicits” extension for the OCaml language [32] module types are
used to describe constraints, modules represent models, with generic functions
explicitly taking module-parameters. Fig. 14 demonstrates some examples. By
contrast to concepts and genus constraints, module types and modules do not have
type parameters, instead they have type members, such as the t in the Eq module type.
Eq_int and Eq_list are the models of Eq for the int and generic list. Generic functions
that need constraints, such as foo and foo’, explicitly take the implicit module
parameters EL and E. Notice that just as type parameters, EL and E are compile-time
parameters, not run-time. They are called implicit because at a call to generic function
actual models can be inferred, as in the x and y examples in Fig. 14. Note that in the
foo function any model of comparison of lists is expected, whereas foo’ expects a
model of comparison of elements of lists and fixes the model Eq_list E for comparing
lists.

module type Eq = sig
 type t
 val equal : t -> t -> bool
end

implicit module Eq_int = struct
 type t = int
 let equal x y = ...
end
implicit module Eq_list {E : Eq} = struct
 type t = Eq.t list

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

24

 let equal xs ys = ...
end

let foo {EL : Eq} xs ys = if EL.equal(xs, ys)
 then xs else xs @ ys
let foo’ {E : Eq} xs ys = if (Eq_list E).equal(xs, ys)
 then xs else xs @ ys
let x = foo [1;2;3] [4;5]
let y = foo’ [1;2;3] [4;5]

Fig. 14. OCaml modular implicits

4.3.2 Concept Parameters for C#
Fig. 15 shows some examples of generic code in the style of concept-parameters,
which we call Cp# — C# with concept-Parameters. Concepts are the same as in C#cpt,
whereas constraints on type parameters are not predicates any more, they are
explicitly stated as parameters in the angle brackets after the “ | ” sign. In the
ICollection<T> interface the Remove method is obviously generic: it takes the
concept-parameter eq for comparing values of type T. Note that concept-parameters
can even be non-generic as in the MaxInt function.
If default models are supported, it must be possible to infer concept-arguments just in
the same way as in C#cpt or Genus, so that in common cases instances of generic
functions and classes can be written in a usual way, without the need to specify the
models required:

var ints = new ISet<int>(...);
var has5 = Contains(ints, 5);

var maxv = MaxInt(ints);
var minv = MaxInt<|IntOrdDesc>(ints);

ISet<String> s1 = ...;
ISet<String|StringEqCaseIS> s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

C#cpt and Genus can easily be redesigned to follow the “concept-parameters” style
presented here. With this style, the syntax of such languages would perfectly fit the
semantics. On the other hand, the “concept-predicates” style used misleads a
programmer and masks the fact that constraints can be satisfied non-uniquely.

concept Equality[T]{ bool Equal(T x, T y);
 bool NotEqual(T x, T y) {return !Equal(x, y);} }
concept Ordering[T] refines Equality[T] { int Compare(T x, T y); } }

interface ISet<T | Equality[T] eq> { ... }
interface ICollection<T> { ...
 bool Remove<Equality[T] eq>(T x); ... }
bool Contains<T | Equality[T] eq>(IEnumerable<T> vs, T x)

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

25

{... if (eq.Equal(...) …}

int MaxInt<|Ordering[int] ord>(IEnumerable<int> vs) {...}

Fig. 15. The use of concept-parameters in Cp#

4. Single Model versus Multiple Models
Table 1 provides a summary on comparison of the languages: each row corresponds
to one property important for generic programming, each column shows levels of
support of the properties in one language. Black circle ● indicates full support of a
property, � — partial support, ○ means that a property is not supported at the
language level, ✴ means that a property is emulated using the Concept pattern, and
the “−” sign indicates that a property is not applicable to a language. The “ModImpl”
column corresponds to the Ocaml modular implicits. All the properties that appear in
rows of Table 1 were discussed in Sec. 3 and Sec. 4. Related properties are grouped
within horizontal lines; some of them are mutually exclusive. For example, as we saw
earlier, the use of constraints as types and natural language support for multi-type
constraints are mutually exclusive features. The major features analysed in the paper
are highlighted in bold.

Table 1. The levels of support for generic programming on OO languages

a Constraints have no self types, therefore, any function member of a constraint can be treated as static function.
b G supports lexically-scoped models but not really multiple models.
c If multiple models are not supported, the notion of model-dependent types does not make sense.
d C++0x concepts, in contrast to G concepts, provide full support for concept-based overloading.

The purpose of this table is not to determine the best language. The purpose is to show
dependencies between different properties and to graphically demonstrate that the
“constraints-are-Not-types” approach is more powerful than the “constraints-are-
types” one. It is also easy to see that there are features that can be expressed under

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

26

any approach, such as static methods, default method implementations, associated
types [15], and even type-conditional models.
It should be mentioned that the table is not exhaustive. There is a bunch of facilities
that we did not discuss at all, although they can be considered independently of the
study we made. Thus, for example, Genus [10] provides a support for such useful
feature as multiple dynamic dispatch. Consider the following code:

constraint Intersectable[T] { T T.intersect(T that); }
model ShapeIntersect for Intersectable[Shape]
{ Shape Shape.intersect(Shape s) {...}
 // Rectangle and Circle are subclasses of Shape
 Rectangle Rectangle.intersect(Rectangle r) {...}
 Shape Circle.intersect(Rectangle r) {...}
 Shape Triangle.intersect(Circle c) {...} ... }

It provides a subtype polymorphism on multiple arguments. So that in the call
s1.intersect(s2) the most specific version of intersect would be used depending on the
dynamic types of both s1 and s2.
Another interesting feature is concept variance. For example, suppose we have the
following Cp# definitions:

interface ISet<T | Equality[T] eq> { ... }
class B { ... }
class D : B { ... }
model EqB for Equality[B] { ... }

Should it be the case that ISet<D, EqB> is a legal instance? Under what conditions?
It is also desirable to have the class SortedSet<T | Ordering[T] ord> implementing
the interface ISet<T|ord>. Are there any problems here?
Now recall the ICollection<T> interface definition:

interface ICollection<T> { ...
 bool Remove<Equality[T] eq>(T x); ... }

The SortedSet<T|ord> class obviously implements the interface ICollection<T>.
Should it be the case that the ord model of Equality[T] be used in place of eq in the
Remove method? Or the Remove method has to remain model-generic?
And one more question. Consider the following function:

void foo<T | Equality[T] eq>(ISet<T|eq> s) { ... }
...
ISet<string | EqStringCaseS> s1 =
 new SortedSet<string | OrdStringCSAsc>(...);
foo(s1);

Which model of Equality[string] should be used inside the foo<>? The static
EqStringCaseS or the dynamic OrdStringCSAsc one?

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

27

There are other questions similar to mentioned above that relate constraints on type
parameters to usual features of object-oriented programming. Some of these questions
require a careful type-theoretical investigation, so this is the subject for future work.

Acknowledgment
The author would like to thank Artem Pelenitsyn, Jeremy Siek, and Ross Tate for
helpful discussions on generic programming.

References
[1]. J. Belyakova. Language Support for Generic Programming in Object-Oriented

Languages: Peculiarities, Drawbacks, Ways of Improvement. To appear in Lecture Notes
in Computer Science, 2016.

[2]. D. R. Musser, A. A. Stepanov. Generic Programming. Proceedings of the International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISAAC ’88, London,
UK, UK: Springer-Verlag, 1989, pp. 13–25.

[3]. R. Garcia et al. An Extended Comparative Study of Language Support for Generic
Programming. J. Funct. Program., Mar. 2007, 17(2), pp. 145–205.

[4]. J.-P. Bernardy et al. A Comparison of C++ Concepts and Haskell Type Classes.
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP ’08,
Victoria, BC, Canada: ACM, 2008, pp. 37–48.

[5]. R. Garcia et al. A Comparative Study of Language Support for Generic Programming.
SIGPLAN Not., Oct. 2003, 38(11), pp. 115–134.

[6]. B. Oliveira, J. Gibbons. Scala for Generic Programmers: Comparing Haskell and Scala
Support for Generic Programming. J. Funct. Program. July 2010, 20(3-4), pp. 303–352.

[7]. S. Wehr, P. Thiemann. JavaGI: The Interaction of Type Classes with Interfaces and
Inheritance. ACM Trans. Program. Lang. Syst., July 2011, 33(4), pp. 12:1–12:83.

[8]. J. G. Siek, A. A. Lumsdaine. Language for Generic Programming in the Large.
Sci. Comput. Program., May 2011, 76(5), pp. 423–465.

[9]. J. Belyakova, S. Mikhalkovich. Pitfalls of C# Generics and Their Solution Using
Concepts. Proceedings of the Institute for System Programming, June 2015, 27(3), pp. 29–
45.

[10]. Y. Zhang et al. Lightweight, Flexible Object-oriented Generics. Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436–445.

[11]. P. Canning et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, Imperial College, London, United
Kingdom: ACM, 1989, pp. 273–280.

[12]. K. Bruce et al. On Binary Methods. Theor. Pract. Object Syst., Dec. 1995, 1(3), pp. 221–
242.

[13]. A. Kennedy, D. Syme. Design and Implementation of Generics for the .NET Common
Language Runtime. SIGPLAN Not., May 2001, 36(5), pp. 1–12.

[14]. J. Belyakova, S. Mikhalkovich. A Support for Generic Programming in the Modern
Object-Oriented Languages. Part 1. An Analysis of the Problems. Transactions of
Scientific School of I. B. Simonenko. Issue 2, 2015, no. 2, pp. 63–77 (in Russian).

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

28

[15]. J. Järvi, J. Willcock, A. Lumsdaine. Associated Types and Constraint Propagation for
Mainstream Object-oriented Generics. Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, San Diego, CA, USA: ACM, 2005, pp. 1–19.

[16]. A. Martelli, U. Montanari. An Efficient Unification Algorithm, ACM Trans. Program.
Lang. Syst., Apr. 1982, 4(2), pp. 258–282.

[17]. The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
http://ceylon-lang.org/documentation/1.2/spec/

[18]. The Kotlin Reference, version 1.0 (February 11, 2016).
https://kotlinlang.org/docs/reference/

[19]. Java Platform, Standard Edition (Java SE) 8. http://docs.oracle.com/javase/8/
[20]. B. C. Oliveira, A. Moors, M. Odersky. Type Classes As Objects and Implicits.

Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM,
2010, pp. 341–360.

[21]. A. Pelenitsyn. Associated Types and Constraint Propagation for Generic Programming in
Scala. Programming and Computer Software, 2015, 41(4), pp. 224–230.

[22]. The Rust Reference, version 1.7.0 (March 3, 2016).
http://doc.rust-lang.org/stable/reference.html

[23]. C. V Hall. et al. Type Classes in Haskell. ACM Trans. Program. Lang. Syst., Mar. 1996,
18(2), pp. 109–138.

[24]. P. Wadler, S. Blott. How to Make Ad-hoc Polymorphism Less Ad Hoc. Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, Austin, Texas, USA: ACM, 1989, pp. 60–76.

[25]. B. Stroustrup. Concept Checking — A More Abstract Complement to Type Checking.
Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++ Standards
Committee Papers, 2003.

[26]. B. Stroustrup, G. Dos Reis. Concepts — Design Choices for Template Argument
Checking. Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, 2003.

[27]. G. Dos Reis, B. Stroustrup. Specifying C++ Concepts. Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, Charleston, South Carolina, USA: ACM, 2006, pp. 295–308.

[28]. B. Stroustrup, A. Sutton. A Concept Design for the STL. Technical Report N3351=12-
0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, 2012.

[29]. A. A. Stepanov, M. Lee. The Standard Template Library. Technical Report 95-11(R.1),
HP Laboratories, 1995.

[30]. A. Sutton. C++ Extensions for Concepts PDTS. Technical Specification N4377, ISO/IEC
JTC1/SC22/WG21, C++ Standards Committee Papers, 2015.

[31]. B. Greenman, F. Muehlboeck, R. Tate. Getting F-bounded Polymorphism into Shape.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom: ACM, 2014, pp. 89–99.

[32]. L. White, F. Bour, J. Yallop. Modular Implicits. ArXiv e-prints, Dec. 2015, arXiv:
1512.01895 [cs.PL].

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

29

Дизайн средств обобщённого программирования в
объектно-ориентированных языках:

ключевые решения*

Ю.В. Белякова <julbel@sfedu.ru>
Институт математики, механики и компьютерных наук им. И.И. Воровича,

Южный федеральный университет,
344006, Россия, г. Ростов-на-Дону, ул. Б. Садовая, д. 105/42

Аннотация. Принято считать, что объектно-ориентированные (ОО) языки
программирования обеспечивают более слабую поддержку обобщённого
программирования (ОП) по сравнению с такими функциональными языками как Haskell
или SML. Это было показано в нескольких работах, посвящённых сравнительному
анализу языков программирования. Но в последние годы появились новые объектно-
ориентированные языки. Улучшили ли они поддержку обобщённого
программирования? И если нет, есть ли причина, по которой ОО-языки до сих пор
уступают функциональным языкам в этом отношении? В предыдущих исследованиях
объектно-ориентированные языки не рассматривались специальным образом. Однако,
возможности ОО-программирования влияют и на средства обобщённого
программирования в языке, а также на сам стиль обобщённого программирования. В
этой статье мы проводим сравнение средств обобщённого программирования в десяти
современных объектно-ориентированных языках и их расширениях. В результате
сравнительного анализа было обнаружено, что каждый из этих языков и расширений
придерживается в точности одного из двух подходов к ограничению типовых
параметров обобщённого кода. Таким образом, первый ключевой вопрос дизайна
средств ОП, рассматриваемый в статье, это «какой подход лучше» (если он вообще есть).
Оказывается, что большинство исследованных нами ОО-языков используют более
ограниченный подход. Второй момент, который оказывает существенное влияние на
выразительную мощь языка программирования, это поддержка множественных
моделей. В статье рассматриваются преимущества и недостатки этой возможности, а
также её связь с другими языковыми средствами поддержки обобщённого
программирования.

Ключевые слова: объектно-ориентированные языки; обобщённое программирование;
типы; ограничения; концепты; интерфейсы; концепт-паттерн; множественные модели;
концепт-параметры.

DOI: 10.15514/ISPRAS-2016-28(2)-1

Для цитирования: Ю.В. Белякова. Дизайн средств обобщённого программирования в
объектно-ориентированных языках: ключевые решения. Труды ИСП РАН, том 28, вып.
2, 2016 г., cтр. 5-32 (на английском). DOI: 10.15514/ISPRAS-2016-28(2)-1

* Данная статья является расширенной версией статьи [1] принятой на конфренцию
«XX Бразильский симпозиум по языкам программирования».

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32.

30

References
[1]. J. Belyakova. Language Support for Generic Programming in Object-Oriented

Languages: Peculiarities, Drawbacks, Ways of Improvement. To appear in Lecture Notes
in Computer Science, 2016.

[2]. D. R. Musser, A. A. Stepanov. Generic Programming. Proceedings of the International
Symposium ISSAC’88 on Symbolic and Algebraic Computation, ISAAC ’88, London,
UK, UK: Springer-Verlag, 1989, pp. 13–25.

[3]. R. Garcia et al. An Extended Comparative Study of Language Support for Generic
Programming. J. Funct. Program., Mar. 2007, 17(2), pp. 145–205.

[4]. J.-P. Bernardy et al. A Comparison of C++ Concepts and Haskell Type Classes.
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP ’08,
Victoria, BC, Canada: ACM, 2008, pp. 37–48.

[5]. R. Garcia et al. A Comparative Study of Language Support for Generic Programming.
SIGPLAN Not., Oct. 2003, 38(11), pp. 115–134.

[6]. B. Oliveira, J. Gibbons. Scala for Generic Programmers: Comparing Haskell and Scala
Support for Generic Programming. J. Funct. Program. July 2010, 20(3-4), pp. 303–352.

[7]. S. Wehr, P. Thiemann. JavaGI: The Interaction of Type Classes with Interfaces and
Inheritance. ACM Trans. Program. Lang. Syst., July 2011, 33(4), pp. 12:1–12:83.

[8]. J. G. Siek, A. A. Lumsdaine. Language for Generic Programming in the Large.
Sci. Comput. Program., May 2011, 76(5), pp. 423–465.

[9]. J. Belyakova, S. Mikhalkovich. Pitfalls of C# Generics and Their Solution Using
Concepts. Proceedings of the Institute for System Programming, June 2015, 27(3), pp. 29–
45.

[10]. Y. Zhang et al. Lightweight, Flexible Object-oriented Generics. Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436–445.

[11]. P. Canning et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, Imperial College, London, United
Kingdom: ACM, 1989, pp. 273–280.

[12]. K. Bruce et al. On Binary Methods. Theor. Pract. Object Syst., Dec. 1995, 1(3), pp. 221–
242.

[13]. A. Kennedy, D. Syme. Design and Implementation of Generics for the .NET Common
Language Runtime. SIGPLAN Not., May 2001, 36(5), pp. 1–12.

[14]. Ю.В. Белякова, С.С. Михалкович. Средства обобщённого программирования в
современных объектно-ориентированных языках. Часть 1. Анализ проблем. Труды
научной школы И.Б. Симоненко. Выпуск 2, 2015, № 2, Ростов-на-Дону, стр. 63–77.

[15]. J. Järvi, J. Willcock, A. Lumsdaine. Associated Types and Constraint Propagation for
Mainstream Object-oriented Generics. Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, San Diego, CA, USA: ACM, 2005, pp. 1–19.

[16]. A. Martelli, U. Montanari. An Efficient Unification Algorithm, ACM Trans. Program.
Lang. Syst., Apr. 1982, 4(2), pp. 258–282.

[17]. The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
http://ceylon-lang.org/documentation/1.2/spec/

[18]. The Kotlin Reference, version 1.0 (February 11, 2016).
https://kotlinlang.org/docs/reference/

[19]. Java Platform, Standard Edition (Java SE) 8. http://docs.oracle.com/javase/8/

Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32.

31

[20]. B. C. Oliveira, A. Moors, M. Odersky. Type Classes As Objects and Implicits.
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe, Nevada, USA: ACM,
2010, pp. 341–360.

[21]. A. Pelenitsyn. Associated Types and Constraint Propagation for Generic Programming in
Scala. Programming and Computer Software, 2015, 41(4), pp. 224–230.

[22]. The Rust Reference, version 1.7.0 (March 3, 2016).
http://doc.rust-lang.org/stable/reference.html

[23]. C. V Hall. et al. Type Classes in Haskell. ACM Trans. Program. Lang. Syst., Mar. 1996,
18(2), pp. 109–138.

[24]. P. Wadler, S. Blott. How to Make Ad-hoc Polymorphism Less Ad Hoc. Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, Austin, Texas, USA: ACM, 1989, pp. 60–76.

[25]. B. Stroustrup. Concept Checking — A More Abstract Complement to Type Checking.
Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++ Standards
Committee Papers, 2003.

[26]. B. Stroustrup, G. Dos Reis. Concepts — Design Choices for Template Argument
Checking. Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, 2003.

[27]. G. Dos Reis, B. Stroustrup. Specifying C++ Concepts. Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, Charleston, South Carolina, USA: ACM, 2006, pp. 295–308.

[28]. B. Stroustrup, A. Sutton. A Concept Design for the STL. Technical Report N3351=12-
0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, 2012.

[29]. A. A. Stepanov, M. Lee. The Standard Template Library. Technical Report 95-11(R.1),
HP Laboratories, 1995.

[30]. A. Sutton. C++ Extensions for Concepts PDTS. Technical Specification N4377, ISO/IEC
JTC1/SC22/WG21, C++ Standards Committee Papers, 2015.

[31]. B. Greenman, F. Muehlboeck, R. Tate. Getting F-bounded Polymorphism into Shape.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom: ACM, 2014, pp. 89–99.

[32]. L. White, F. Bour, J. Yallop. Modular Implicits. ArXiv e-prints, Dec. 2015, arXiv:
1512.01895 [cs.PL].

