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Abstract. It is generally considered that object-oriented (OO) languages provide weaker 
support for generic programming (GP) as compared with functional languages such as Haskell 
or SML. There were several comparative studies which showed this. But many new object-
oriented languages have appeared in recent years. Have they improved the support for generic 
programming? And if not, is there a reason why OO languages yield to functional ones in this 
respect? In the earlier comparative studies object-oriented languages were usually not treated 
in any special way. However, the OO features affect language facilities for GP and a style 
people write generic programs in such languages. In this paper we compare ten modern object-
oriented languages and language extensions with respect to their support for generic 
programming. It has been discovered that every of these languages strictly follows one of the 
two approaches to constraining type parameters. So the first design challenge we consider is 
“which approach is better”. It turns out that most of the explored OO languages use the less 
powerful one. The second thing that has a big impact on the expressive power of a programming 
language is language support for multiple models. We discuss pros and cons of this feature and 
its relation to other language facilities for generic programming.  
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1. Introduction 
Almost all modern programming languages provide language support for generic 
programming (GP) [2]. Some languages do it better than others. For example, Haskell 
is generally considered to be one of the best languages for generic programming [3, 
4], whereas mainstream object-oriented languages such as C# and Java are much less 
expressive and have many drawbacks. There were several studies that compared 
language support for generic programming in different languages [3–6]. However, 
these studies do not make any difference between object-oriented and functional 
languages. We argue that OO languages are to be treated separately, because they 
support the distinctive OO features that pure functional languages do not, such as 
inheritance, interfaces/traits, subtype polymorphism, etc. These features affect the 
language design and a way people write generic programs in object-oriented 
languages. 
Several new object-oriented languages have appeared in recent years, for instance, 
Rust, Swift, Kotlin. At the same time, several independent extensions have been 
developed for the mainstream OO languages [7–10]. These new languages and 
extensions have many differences, but all of them tend to improve the support for 
generic programming. There is a lack of a careful comparison of the approaches and 
mechanisms for generic programming in modern object-oriented languages. This 
study is aimed to fill the gap: it gives a survey, analysis, and comparison of the 
facilities for generic programming that the chosen OO languages provide. We identify 
the dependencies between major language features, detect incompatible ones, and 
point the properties that a language design should satisfy to be effective for generic 
programming. 

2. Main Ideas 
Ten modern object-oriented languages and language extensions have been explored 
in this study with respect to generic programming. We have found out that in the case 
of OO languages there are exactly two approaches to a design of language constructs 
for generic programming. We call the first one “constraints-are-types”, because under 
this approach OO constructs such as interfaces or traits, which are usually used as 
types in object-oriented programs, are also used to constrain type parameters in 
generic programs. The second approach, “constraints-are-Not-types”, restricts OO 
constructs to be used as types only, and provides separate language constructs for 
constraining type parameters. Hence the first design challenge arises: is one of this 
approaches better than another? Or the same expressive power can be achieved using 
any of them? We answer these questions in Sec. 3. It turns out that the approaches 
cannot be integrated together, and the second one is more expressive. 
The second point covered in the paper in detail (in Sec. 4) is language support for 
multiple models (by “model” we mean a way in which types satisfy constraints). 
There are several questions related to multiple models: 

1. Is it desirable to have multiple models of a constraint? 
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2. How can support for multiple models be provided with the approaches 
discovered? 

3. Why does not Haskell allow multiple models (instances of a type class)? 
4. Is there a language design that reflects the support for multiple models better 

than the existing ones? 
The short answers are: 

1. Yes, it is desirable. 
2. It can be naturally provided with the second approach but not with the first 

one. 
3. Because of type inference. 
4. Yes, there is. 

In conclusion, we present a modified version of the well-known table [3, 5] showing 
the levels of language support for the features important for generic programming. 
Table 1 provides information on all of the object-oriented languages considered, 
introduces some new features, and demonstrates the relations between the features. 

3. Two Approaches to Constraining Type Parameters 
This section provides a survey of language constructs for generic programming in 
several modern object-oriented programming languages as well as some language 
extensions. All of the languages we explored adopt one of the two approaches: 

1. Interface-like constructs, which are normally used as types in object-oriented 
programming, are also used to constrain type parameters. By “interface-like 
constructs” we mean, in particular, C#/Java interfaces, Scala traits, Swift 
protocols, Rust traits. Fig. 1 shows a corresponding example in C#: 
IPrintable interface acts as the type of xs in PrintArr, whereas in the function 
InParens<T> it is used to constrain the type parameter T. 

2. For constraining type parameters a separate language construct is provided; 
such construct cannot be used as a type. We will see some examples in 
Sec. 3-2.  

Sec. 3-1 analyses the languages of the first category; Sec. 3-2 is devoted to the second 
one. In Sec. 3-3 we compare both approaches and answer the question “Which one is 
better if any?”. 
 

interface IPrintable { string Print(); } 
 
void PrintArr(IPrintable[] xs) 
{ foreach (var x in xs) 
      Console.WriteLine("{0}\n", x.Print()); } 
 
string InParens<T>(T x) where T : IPrintable 
{ return "(" + x.Print() + ")"; } 

Fig. 1. An ambiguous role of C# interfaces 
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3.1 Languages with “Constraints-are-Types” Philosophy 
C# and Java are probably the best-known programming languages in this category, 
with interfaces being used to constrain type parameters. In comparison with other 
languages that support generic programming, these ones are much less expressive and 
have several considerable drawbacks. 
Lack of retroactive interface implementation. After a type had been defined, it 
cannot implement any new interface. A consequence is that generic code with 
constraints on type parameters can only be instantiated with types originally designed 
to satisfy these constraints. It is impossible to adapt types afterwards, even if they 
semantically conform the constraints. 
 

interface IComparable<T> { int CompareTo(T other); } 
 
class SortedSet<T>  where T : IComparable<T> { ... } 

Fig. 2. The IComparable<T> interface in C# 

Drawbacks of F-bounded polymorphism. F-bounded polymorphism [11] allows 
“recursive” constraints (F- constraints) on type parameters in the form T : I<T>, 
where T is a type parameter, I<> is a generic interface. Such kind of constraints solves 
the binary method problem [12]: Fig. 2 demonstrates a corresponding C# [13] 
example. The type parameter T in the interface IComparable<T> pretends to be a type 
that implements this interface. This is indeed the case for the class SortedSet<T> due 
to the constraint T : IComparable<T>, so the method T.CompareTo(T) is like a binary 
function for comparing elements of type T. But the semantics of IComparable<T> 
itself has nothing to do with binary methods. One could easily write some class Foo 
implementing IComparable<Bar>, and thus the semantics of comparing two Bars 
would be broken. Another shortcoming of the F-bounded polymorphism is that code 
with recursive constraints is rather cumbersome and difficult to understand. Yet, as 
we will see, the F-bounded polymorphism is not the only solution to the binary 
method problem. More detailed discussion on the pitfalls of the F-bounded 
polymorphism can be found in [9, 14]. 
Lack of associated types [14,15]. Types that are logically related to some entity are 
often called associated types of the entity. For instance, types of edges and vertices 
are associated types of a graph. There is no specific language support for associated 
types in C# and Java: such types are expressed in generic code in the form of extra 
type parameters. 
Lack of constraints propagation [14,15]. Despite the fact that the definition of the 
class SortedSet<T> in Fig. 2 already contains a constraint on the type parameter T, in 
the baz<T> function defined below the constraint on T is to be placed as well. 
void baz<T>(SortedSet<T> s) where T : IComparable<T> { ... }  
Although baz<T> takes a value of type SortedSet<T>, so it is clear from the signature 
of the function that T must be comparable, the code would not compile without an 
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explicit constraint. In other words, a compiler does not propagate the constraints 
implied by formal parameters, this is a programmer’s burden. 
 

interface ITerm<Tm> { IEnumerable<Tm> Subterms(); ... } 
 
interface IEquation<Tm, Eqtn, Subst>     where Tm : ITerm<Tm> 
    where Eqtn : IEquation<Tm, Eqtn, Subst> 
    where Subst : ISubstitution<Tm, Eqtn, Subst> 
{ Subst Solve(); 
  IEnumerable<Eqtn> Split(); ... } 
 
interface ISubstitution<Tm, Eqtn, Subst> where Tm : ITerm<Tm> 
    where Eqtn : IEquation<Tm, Eqtn, Subst> 
    where Subst : ISubstitution<Tm, Eqtn, Subst> 
{ Tm SubstituteTm(Tm); 
  IEnumerable<Eqtn> SubstituteEq (IEnumerable<Eqtn>); ... } 

Fig. 3. The C# interfaces for unification algorithm 

Some of the drawbacks mentioned above have been successfully eliminated in the 
modern object-oriented languages. We briefly examine language facilities for generic 
programming in several OO languages with the “constraints-are-types” philosophy in 
the following subsections. But there is a problem common for all languages of this 
category, the problem of multi-type constraints (constraints on several types). Note 
that an interface (or a similar language construct) describes properties, an interface of 
a single type that implements/extends it. This has inevitable consequence: multi-type 
constraints cannot be expressed naturally. Consider a generic unification 
algorithm [16]: it takes a set of equations between terms (symbolic expressions), and 
returns the most general substitution which solves the equations. So the algorithm 
operates on three kinds of data: terms, equations, substitutions. A signature of the 
algorithm might be as follows: 
Subst Unify<Tm, Eqtn, Subst>(IEnumerable<Eqtn>) 
But a bunch of functions has to be provided to implement the algorithm: Subterms : 
Tm → Ienumerable<Tm>, 
Solve : Eqtn → Subst, SubstituteTm : Subst × Tm → Tm, 
SubstituteEq : Subst × Ienumerable<Eqtn> → IEnumarable<Eqtn>, and some others. 
All these functions are needed for unification at once, hence it would be convenient 
to have a single constraint that relates all the type parameters and provides the 
functions required. 
Subst Unify<Tm, Eqtn, Subst>  
 (IEnumerable<Eqtn>) where <single constraint> 
But in C#/Java the only thing one can do2 is to define three different interfaces 
describing a term, equation and substitution, and then separately constrain every type 
parameter with a respective interface. Fig. 3 shows the interface definitions. To set 
                                                 
2  The Concept design pattern can also be used, but it has its own drawbacks. We will discuss 
concept pattern later, in Sec. 4-3-2. 
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up a relation between mutually dependent interfaces, three type parameters are used: 
Tm for terms, Eqtn for equations, and Subst for substitution. Moreover, the 
parameters are repeatedly constrained with the appropriate interfaces in every 
interface definition. These constraints are to be stated in a signature of the unification 
algorithm as well: 
Subst Unify<Tm, Eqtn, Subst> (IEnumerable<Eqtn>) 
 where Tm : ITerm<Tm> 
 where Eqtn : IEquation<Tm, Eqtn, Subst> 
 where Subst : ISubstitution<Tm, Eqtn, Subst> 
There is one more thing to notice here — interfaces are used in both roles in the same 
piece of code: the IEnumerable<Eqtn> interface is used as a type, whereas other 
interfaces in the where sections are used as constraints. 
 

interface Equatable<T> {  fun equal (other: T) : Boolean 
                          fun notEqual(other: T): Boolean 
                          { return !this.equal(other) }    } 
 
class Ident (name : String) : Equatable<Ident> { 
  val idname = name.toUpperCase() 
  override fun equal (other: Ident) : Boolean 
  { return idname == other.idname }            } 

Fig. 4. Interfaces and constraints in Kotlin 

3.1.1 Interfaces in Ceylon and Kotlin 
In contrast to C#, Ceylon [17] and Kotlin [18] interfaces support default method 
implementation, so Java 8 [19] interfaces do. This is a useful feature for generic 
programming. For instance, one can define an interface for equality that provides a 
default implementation for the inequality operation. Fig. 4 demonstrates 
corresponding Kotlin definitions: the Ident class implements the interface 
Equatable<Ident> that has two methods, equal and notEqual; as long as notEqual has 
a default implementation in the interface, there is no need to implement it again in the 
definition of the Ident class. 
 

shared interface Comparable<Other> of Other 
       given Other satisfies Comparable<Other> 
{  shared formal Integer compareTo(Other other); 
   shared Integer reverseCompareTo(Other other) 
   { return other.compareTo(this); }             } 

Fig. 5. The use of “self type” in Ceylon interfaces 

In addition to default method implementations, the Ceylon language also allows a 
type parameter to be declared as a self type. An example is shown in Fig. 5. In the 
definition of the Comparable<Other> interface the declaration of Other explicitly 
requires Other to be a self type of the interface, i. e. a type that implements this 
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interface. Because of this the reverseCompareTo method can be defined: both the 
other and this values are of type Other, with the Other implementing 
Comparable<Other>, so the call other.compareTo(this) is perfectly legal.  

3.1.2 Scala Traits 
Similarly to advanced interfaces in Java 8, Ceylon, and Kotlin, Scala traits [6,20] 
support default method implementations. They can also have abstract type members, 
which, in particular, can be used as associated types [21]. Just as in 
C#/Java/Ceylon/Kotlin, type parameters (and abstract types) in Scala can be 
constrained with traits and supertypes (upper bounds): the latter constraints are called 
subtype constraints. But, moreover, they can be constrained with subtypes (lower 
bounds), which are called supertype constraints. None of the languages we discussed 
so far support supertype constraints nor associated types. Another important Scala 
feature, implicits [20], will be mentioned later in Sec. 4-1 with respect to the Concept 
design pattern. 
 

struct Point { x: i32, y: i32, } 
... 
impl Point                                     { 
  fn moveOn(&self, dx: i32, dy: i32) -> Point 
  { Point {x: self.x + dx, y: self.y + dy }  } } 
... 
impl Point { 
  fn reflect(&self) -> Point { Point {x: -self.x, y: -self.y} } } 
... 
let p1 = Point {x: 4, y: 3}; 
let p2 = p1.moveOn(1, 1);    let p3 = p1.reflect(); 

Fig. 6. Point struct and its methods in Rust  

trait Eqtbl { fn equal(&self, that: &Self) -> bool; 
  fn not_equal(&self, that: &Self) -> bool { !self.equal(that) } } 
trait Printable { fn print(&self); } 
... 
impl Eqtbl for i32 { 
  fn equal (&self, that: &i32) -> bool { *self == *that } }  
... 
struct Pair<S, T>{ fst: S, snd: T } 
... 
impl <S : Eqtbl, T : Eqtbl> Eqtbl for Pair<S, T>             { 
  fn equal (&self, that: &Pair<S, T>) -> bool 
  { self.fst.equal(&that.fst) && self.snd.equal(&that.snd) } } 

Fig. 7. An example of using Rust traits 

3.1.2 Rust Traits 
The Rust language [22] is quite different from other object-oriented languages. There 
is no traditional class construct in Rust, but instead it suggests structs that store the 
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data, and separate method implementations for structs. An example is shown 
in Fig. 63: two impl Point blocks define method implementations for the Point struct. 
If a function takes the &self4 argument (as moveOn), it is treated as a method. There 
can be any number of implementation blocks, yet they can be defined at any point 
after the struct declaration (even in a different module). This gives a huge advantage 
with respect to generic programming: any struct can be retroactively adapted to 
satisfy constraints. 
Constraints in Rust are expressed using traits. A trait defines which methods have to 
be implemented by a type similarly to Scala traits, Java 8 interfaces, and others. Traits 
can have default method implementations and associated types; besides that, the self 
type of the trait is directly available and can be used in method definitions. Fig. 75 
demonstrates an example: the Eqtbl trait defining the equality and inequality 
operations. Note how support for the self type solves the binary method problem (here 
equal is a binary method): there is no need in extra type parameter that “pretends” to 
be a self type, because the self type Self is already available. 
Method implementations in Rust can be probably thought of similarly to .NET 
“extension methods”. But in contrast to .NET6, types in Rust also can retroactively 
implement traits in impl blocks as shown in Fig. 7: Eqtbl is implemented by i32 and 
Pair<S, T>. The latter definition also demonstrates a so-called type-conditional 
implementation: pairs are equality comparable only if their elements are equality 
comparable. The constraint <S : Eqtbl... is a shorthand, it can be declared in a where 
section as well. 
There is no struct inheritance and subtype polymorphism in Rust. Nevertheless, as 
long as traits can be used not only as constraints but also as types, a dynamic dispatch 
is provided through a feature called trait objects. Suppose i32 and f64 implement the 
Printable trait from Fig. 7. Then the following code demonstrates creating and use of 
a polymorphic collection (the type of the polyVec elements is a reference type):  
let pr1 = 3; let pr2 = 4.5; let pr3 = -10;  
let polyVec: Vec<&Printable> = vec![&pr1, &pr2, &pr3];  
for v in polyVec { v.print(); } 

3.1.3 Swift Protocols 
Swift is a more conventional OO language than Rust: it has classes, inheritance, and 
subtype polymorphism. Classes can be extended with new methods using extensions 

                                                 
3  Some details were omitted for simplicity. To make the code correct, one has to add 
#[derive(Debug,Copy,Clone)] before the Point definition. 
4  The “&” symbol means that an argument is passed by reference. 
5  Some details were omitted for simplicity. The following declaration is to be provided to 
make the code correct: #[derive(Copy, Clone)] before the definition struct Pair<S : Copy, T : 
Copy>. Yet the type parameters of the impl for pair must be constrained with Copy+Equatable. 
6  Similarly to .NET, Kotlin supports extending classes with methods and properties, but 
interface implementation in extensions is not allowed. 
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that are quite similar to Rust method implementations. Instead of interfaces and traits 
Swift provides protocols. They cannot be generic but support associated types and 
same-type constraints, default method implementations through protocol extensions, 
and explicit access to the self type; due to the mechanism of extensions, types can 
retroactively adopt protocols. Fig. 8 illustrates some examples: the Equatable 
protocol extended with a default implementation for notEqual (pay attention to the 
use of the Self type); the contains<T> generic function with a protocol constraint on 
the type parameter T; an extension of the type Int that enables its conformance to the 
Printable protocol; the Container protocol with the associated type ItemTy; the 
allItemsMatch generic function with the same-type constraint on types of elements of 
two containers, C1 and C2. 
 

protocol Equatable  { func equal(that: Self) -> Bool; } 
extension Equatable { func notEqual(that: Self) -> Bool 
                      { return !self.equal(that) }    } 
func contains<T : Equatable> (values: [T], x: T) -> Bool { ... } 
 
protocol Printable { func print(); } 
extension Int : Printable { ... } 
 
protocol Container { associatedtype ItemTy ... } 
func allItemsMatch<C1: Container, C2: Container 
  where C1.ItemTy == C2.ItemTy, C1.ItemTy: Equatable> ... 

Fig. 8. Protocols and their use in Swift 

3.2 Languages with “Constraints-are-Not-Types” Philosophy 
Most of the languages in this category were to some extent inspired by the design of 
Haskell type classes [22]. For defining constraints these languages suggest new 
language constructs, which are usually second-class citizens7. These constructs have 
no self types and cannot be used as types, they describe requirements on type 
parameters in an external way; therefore, retroactive satisfaction of constraints 
(retroactive modeling) is automatically provided. Besides retroactive modeling, an 
integral advantage of such kind of constructs is that multi-type constraints can be 
easily and naturally expressed using them; yet there is no semantic ambiguity which 
arises when the same construct, such as C # interface, is used both as a type and 
constraint, as in the example below: 
void Sort<T>(ICollection<T>) where T : IComparable<T> 
Here ICollection<T> and IComparable<T> are generic interfaces, but the former one 
is used as a type whereas the latter one is used as a constraint. 
 

interface EQ { boolean eq(This that); 

                                                 
7  Second-class citizens cannot be assigned to variables, passed as arguments, returned from 
functions. 
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               boolean notEq(This that); } 
abstract implementation EQ [EQ]                         { 
    boolean notEq(This that) { return !this.eq(that); } } 
 
boolean contains<X>(List<X> list, X x) where X implements EQ { ... } 
 
abstract class Expr {...}    class IntLit extends Expr {...} 
class PlusExpr extends Expr  { Expr left; Expr right; ...  } 
... 
implementation EQ [Expr] { boolean eq(Expr that) { return false; } } 
implementation EQ [PlusExpr]{ boolean eq(PlusExpr that) {...} } 
 
interface UNIFY [Tm, Eqtn, Subst] { 
    receiver Tm    { IEnumerable<Tm> Subterms(); ... } 
    receiver Eqtn  { IEnumerable<Eqtn> Split();  ... } 
    receiver Subst { Tm SubstituteTm(Tm); ...        } } 
Subst Unify<Tm, Eqtn, Subst>(Enumerable<Eqtn>) 
    where [Tm, Eqtn, Subst] implements UNIFY {...} 

Fig. 9. Generalized interfaces in JavaGI 

3.2.1 JavaGI Generalized Interfaces 
JavaGI [7] generalized interfaces represent a kind of confluence of both “constraints-
are-types” and “constraints-are-not-types” philosophies. Interfaces such as 
PrettyPrintable defined below are called single-parameter interfaces. They describe 
interfaces of a single type and can be used both as types and constraints. 
interface PrettyPrintable { String prettyPrint(); } 
Such interfaces have explicit access to the self type named This; an example is shown 
in Fig. 9, where the self type is used in the interface EQ. There is no direct support 
for default method implementations in JavaGI, but abstract implementation 
definitions can be used for this purpose8. For example, the notEq method of EQ 
(Fig. 9) is implemented in such a way. Generalized interfaces can be implemented 
retroactively in implementation blocks. They do not support associated types but can 
be generic; moreover, implementations can be generic as well, and the support for 
type-conditional interface implementation is provided: 
implementation<S, T> EQ [Pair<S, T>] where S implements EQ 
 where T implements EQ { ... } 
Besides single-parameter interfaces, there are multi-headed generalized interfaces 
that adopt several features from Haskell type classes [24] and describe interfaces of 
several types. There is no self type in a multi-headed interface; therefore, it cannot be 
used as a type, it is designed to be used as a constraint only. An example of multi-
headed interface is shown in Fig. 9: the UNIFY interface contains all the functions 
required by the unification algorithm considered earlier; the requirements on three 

                                                 
8 The design of JavaGI we discuss here goes back to 2011 when default method 
implementations were not supported in Java. With Java 8 this task could probably be solved in 
a more elegant way. 
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types (term, equation, substitution) are defined at once in a single interface. Note how 
succinct is this definition as compared with the one in Fig. 3. 
 

concept InputIterator<Iter> { type value; ... } 
concept Monoid<T>  { fun identity_elt() -> T; 
                     fun binary_op(T, T) -> T; }; 
model Monoid<int> 
{ fun identity_elt() -> int@ { return 0; } ... }; 
 
fun accumulate<Iter>  where { InputIterator<Iter>, 
                              Monoid<InputIterator<Iter>.value> } 
(Iter first, Iter last) -> InputIterator<Iter>.value 
{ let init = identity_elt(); ... } 

Fig. 10. Concepts and their use in G 

3.2.2 Language G and C++ concepts 
Concept as an explicit language construct for defining constraints on type parameters 
was initially introduced in 2003 [25]. Several designs have been developed since that 
time [26–28]; in the large, the expressive power of concepts is rather close the Haskell 
type classes [4]. Concepts were designed to solve the problems of unconstrained C++ 
templates [14, 29]; they were expected to be included in C++0x standard, but this did 
not happen. A new version of concepts, Concepts Lite (C++1z) [30], is under way 
now. The language G declared as “a language for generic programming” [8] also 
provides concepts that are very similar to the C++0x concepts. G is a subset of C++ 
extended with several constructs for generic programming. For “C++ concepts” we 
use the G syntax in this paper. 
Similarly to a type class, a concept defines a set of requirements on one or more type 
parameters. It can contain function signatures that may be accompanied with default 
implementations, associated types, nested concept-requirements on associated types, 
and same-type constraints. A concept can refine one or more concepts, it means that 
the refining concept includes all the requirements from the refined concepts. 
Refinement is very similar to multiple interface inheritance in C# or protocol 
inheritance in Swift. Due to the concept refinement, a so-called concept-based 
overloading is supported: one can define several versions of an algorithm/class that 
have different constraints, and then at compile time the most specialized version is 
chosen for the given instance. The C++ advance algorithm for iterators is a classic 
example of concept-based overloading application. 
It is said that a type (or a set of types) satisfies a concept if an appropriate model of 
the concept is defined for this type (types). Model definitions are independent from 
type definitions, so the modeling relation is established retroactively; models can be 
generic and type-conditional. Fig. 10 illustrates some examples: the 
InputIterator<Iter> concept with the associated type of elements value; the 
Monoid<T> concept and its model for the type int; the accumulate<Iter> generic 
function with two constraints, on the type of the iterator and on the associated type of 

Belyakova Julia. Language Support for Generic Programming in Object-Oriented Languages: Design Challenges. Trudy 
ISP RAN /Proc. ISP RAS, 2016, vol. 28, no 2, pp. 5-32. 

16 

this iterator. Note how identity_elt is called in accumulate: in contrast to the languages 
from the previous section, identity_elt is available in the body of accumulate at the 
top-level; this may lead to some inconvenience even if the autocomplete feature is 
supported in IDE. 

3.2.3 C# with concepts 
In the C#cpt project [9] (C# with concepts) concept mechanism integrates with 
subtyping: type parameters and associated types can be constrained with supertypes 
(as in basic C#) and also with subtypes (as in Scala). In contrast to all of the languages 
we discussed earlier, C#cpt allows multiple models of a concept in the same scope.  
 

concept CEquatable[T]     { bool Equal(T x, T y); 
  bool NotEqual(T x, T y) { return !Equal(x, y); } } 
 
interface ISet<T> where CEquatible[T] { ... } 
bool Contains<T>(IEnumerable<T> values, T x) 
  where CEquatable[T] using CEq {... if (cEq.Equal(...) ...} 
 
model default StringEqCaseS for CEquatable[String] { ... } 
model StringEqCaseIS for CEquatable[String] { ... } 

Fig. 11. Concepts and models in C#cpt 

Some examples are shown in Fig. 11: the CEquatable[T] concept with the Equal 
signature and default implementation of NotEqual, the generic interface ISet<T> with 
the concept-requirement on the type parameter T, and two models of CEquatable[] 
for the type String — for case-sensitive and case-insensitive equality comparison. The 
first model is marked as a default model9: it means that this model is used if a model 
is not specified at the point of instantiation. For instance, in the following code 
StringEqCaseS is used to test equality of strings in s1. 
ISet<String> s1 = ...; 
ISet<String>[using StringEqCaseIS] s2 = ...; 
s1 = s2; // Static ERROR, s1 and s2 have different types 
Note that s1 and s2 have different types because they use different models of 
CEquatible[String]. This property is called “constraints-compatibility” in [9], but we 
will refer to it as “models-consistency”. One more interesting thing about C#cpt: 
concept-requirements can be named. In the Contains<T> function (Fig. 11) the name 
cEq is given to the requirement on T; this name is used later in the body of 
Contains<T> to access the Equal function of the concept. It is also worth mention that 
the interface IEnumerable<T> is used as a type along with the concept CEquatable[T] 
being used as a constraint; thus, the role of interfaces is not ambiguous any more, 
interfaces and concepts are independently used for different purposes. 
 

                                                 
9  The default model can be generated automatically for a type if the type conforms to a concept, 
i.e. it provides methods required by the concept. 
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constraint Eq[T] { boolean T.equals(T other); } 
constraint GraphLike[V, E] { V E.source(); ... } 
 
interface ISet<T> where CEquatible[T] { ... } 
bool Contains<T>(IEnumerable<T> values, T x) 
  where CEquatable[T] using CEq {... if (cEq.Equal(...) ...} 
 
model default StringEqCaseS for CEquatable[String] { ... } 
model StringEqCaseIS for CEquatable[String] { ... } 

Fig. 12. Constraints and models in Genus 

3.2.4 Constraints in Genus 
Like G concepts and Haskell type classes, constraints in Genus [10] (an extension for 
Java) are used as constraints only. Fig. 12 demonstrates some examples: the Eq[T] 
constraint, which is used to constrain the T in the Set[T] interface; the model of 
Eq[String] for case-insensitive equality comparison; the multi-parameter constraint 
GraphLike[V,E], and the type-conditional generic model DualGraph[V,E]. Methods 
in Genus classes/interfaces can impose additional constraints:  
interface List[E] { boolean remove(E e) where Eq[E]; ... } 
Here the List[] interface can be instantiated by any type, but the remove method can 
be used only if type E of the elements satisfies the Eq[E] constraint. This feature is 
called model genericity. 
Just as C#cpt, Genus supports multiple models and automatic generation of the natural 
model, which is the same thing as the default model in C#cpt. Due to this, the following 
code causes a static type error (we saw the same example in C#cpt ): 
Set[String] s1 = ...; 
Set[String with CIEq] s2 = ...; 
s1 = s2; // Static ERROR, s1 and s2 have different types 
In Genus this feature is called model-dependent types. An important note is to be 
made here: in contrast to true dependent types that depend on values, model-
dependent types depend on models, which are compile-time artefacts. So the model-
dependent types are just as dependent as generic types are type-dependent types. 
As well as concept-requirements in C#cpt, constraint-requirements in Genus can be 
named; the example is shown in Fig. 12: g is a name of the GraphLike[V,E] constraint 
required by the DualGraph[V,E] model. Because function signatures inside 
constraints are declared with an explicit receiver type (in a style close to JavaGI), 
such as the type T in the Eq[T] constraint, syntax of calls to functions in the case of 
named models is _.(g.sink)(), not g.sink(_). 

3.3 Which Philosophy Is Better If Any? 
It is time to find out which approach is better. Taking into consideration what we 
explored in Sec. 3-1 and Sec. 3-2, we draw a conclusion that there are only two 
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language features important for generic programming that cannot be incorporated in 
a language together: 

1. the use of a construct both as a type and constraint; 
2. natural support for multi-type constraints. 

Languages with “constraints-are-types” philosophy support the first feature but not 
the second, languages with “constraints-are-Not-types” philosophy vice versa10. Can 
we determine one feature that is more important? 
It was shown in the study [31] that in practice interfaces that are used as constraints 
(such as IComparable<T> in C# or Comparable<X> in Java) are almost never used 
as types: authors had checked about 14 millions lines of Java code and found only 
one such example, which could be even rewritten and eliminated. According to [31], 
the same observation also holds for the code in Ceylon. It is hard to imagine any 
useful “constraint-and-type” example besides the IPrintable interface from Fig. 1. In 
those rare cases when this could happen, it is possible to provide a lightweight 
language mechanism for automatic generation of one construct from another. For 
example, single-parameter Genus constraints with some restrictions could be 
translated to Java interfaces, with the other direction being easier. 
At the same time, multi-type constraints, which can be so naturally expressed under 
the “constraints-are-Not-types” approach, have rather awkward and cumbersome 
representation in the “constraints-are-types” approach as we have seen in Sec. 3-1. 
Language support for multiple models is also a problem in the latter approach: it is 
considered in detail in the next section. All other language facilities we discussed 
could be supported under any approach. Therefore, we claim that with respect to 
generic programming the “constraints-are-Not-types” approach is preferable. An 
additional benefit is that it eliminates the ambiguity in semantics of the interface-like 
constructs currently used for different purposes in OO languages. 

4. Single Model versus Multiple Models 
For simplicity, in this part of the paper we call “constraint” any language construct 
that is used to describe constraints, while a way in which types satisfy the constraints 
we call “model”. We have seen in the previous section that most of the languages 
allow having only one, unique model of a constraint for the given set of types; only 
C#cpt [9] and Genus [10] support multiple models11. And indeed this makes sense for 
the languages with “constraints-are-types” philosophy, because it is not clear what to 
do with types that could implement interfaces (or any other similar constructs) in 
several ways. But how does this affect generic programming? 

                                                 
10  JavaGI seems to support both of them, but it actually provides different constructs for 
different purposes: single-parameter interfaces are more like Rust traits or Swift protocols, 
whereas multi-headed interfaces are similar to concepts and type classes; the latter cannot be 
used as types. 
11  G [7] allows multiple models only in different lexical scopes. 



Белякова Ю.В. Дизайн средств обобщённого программирования в объектно-ориентированных языках: ключевые 
решения. Труды ИСП РАН, 2016, том 28, выпуск 2, с. 5-32. 

19 

It turns out that sometimes it is desirable to have multiple models of a constraint for 
the same set of types. The example of string sets with case-sensitive and case-
insensitive equality comparisons we saw earlier is only one of such examples; another 
one is the use of different orderings on numbers, yet different graph implementations, 
and so on. Thus, in respect of generic programming, the absence of multiple models 
is rather a problem than a benefit. Without extending the language the problem of 
multiple models can be solved in two ways, and both of them have serious drawbacks. 

1. Using the Adapter pattern. If one wants the type Foo to implement 
IComparable<Foo> in a different way, an adapter of Foo, the Foo1 that 
implements IComparable<Foo1> can be created. This adapter then can be 
used instead of Foo whenever the Foo1-style comparison is required. An 
obvious shortcoming of this approach is the need to repeatedly wrap and 
unwrap Foo values; in addition, a code becomes cumbersome. 

2. Using the Concept design pattern [20], which is considered in Sec. 4-1. 
As we have discovered in Sec. 3-3, languages with the “constraints-are-types” 
philosophy are in the large less expressive than the ones with the “constraints-are-
Not-types” philosophy. But may languages such as C#cpt and Genus, which are in the 
“constraints-are-Not-types” category and support multiple models at the language 
level, be considered as the best languages for generic programming? Or we can 
imagine a language with a better design? We discuss this question in Sec. 4-3. And 
one more question: if language support for multiple models is a good idea, then why 
does not Haskell [24] allow multiple instances of a type class? This issue is 
considered in Sec. 4-2. 

4.1 Concept Pattern 
 

// F-bounded polymorphism 
interface IComparable<T> { int CompareTo(T other); } 
void Sort<T>(T[] values) where T : IComparable<T> { ... } 
class SortedSet<T>       where T : IComparable<T> { ... } 
 
// Concept Pattern 
interface IComparer<T> { int Compare(T x, T y); } 
void Sort<T>(T[] values, IComparer<T> cmp) { ... } 
class SortedSet<T> { private IComparer<T> cmp; ... 
    public SortedSet(IComparer<T> cmp) { ... } ... } 

Fig. 13. The use of the Concept design pattern in C# 

The Concept design pattern is suitable for programming languages with the 
“constraints-are-types” philosophy. It eliminates two problems: 

1. Firts, it enables retroactive modeling of constraints, which is not supported 
in languages such as C#, Java, Ceylon, Kotlin, or Scala. 

2. Second, it allows defining multiple models of a constraint for the same set 
of types. 
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The idea of the Concept pattern is as follows: instead of constraining type parameters, 
generic functions and classes take extra arguments that provide a required 
functionality — “concepts”. Fig. 13 shows an example: in the case of the Concept 
pattern the F-constraint T : IComparable<T> is replaced with an extra argument of 
the type IComparer<T>. The IComparer<T> interface represents a concept of 
comparing: it describes interface of an object that can compare values of type T. As 
long as one can define several classes implementing the same interface, different 
“models” of the IComparer<T> “concept” can be passed into Sort<T> and 
SortedSet<T>. 
This pattern is widely used in generic libraries of mainstream object-oriented 
languages such as C# and Java; it is also used in Scala. Due to implicits [6,20], the 
use of the Concept pattern in Scala is a bit easier: in most cases an appropriate 
“model” can be found by a compiler implicitly, so there is no need to explicitly pass 
it at a call site12. Nevertheless, the pattern has two substantial drawbacks. First of all, 
it brings run-time overhead, because every object of a generic class with constraints 
has at least one extra field for the “concept”, while constrained generic functions take 
at least one extra argument. The second drawback, which we call models-
inconsistency, is less obvious but may lead to very subtle errors. Suppose we have s1 
of type HashSet<String> and s2 of the same type, provided that s1 uses case-sensitive 
equality comparison, s2 — the case-insensitive one. Thus, s1 and s2 use different, 
inconsistent models of comparison. Now consider the following function: 
static HashSet<T> GetUnion<T>(HashSet<T> a, HashSet<T> b) 
{ var us = new HashSet<T>(a, a.Comparer); 
 us.UnionWith(b);  return us;     } 
Unexpectedly, the result of GetUnion(s1, s2) could differ from the result of 
GetUnion(s2, s1). Despite the fact that s1 and s2 have the same type, they use different 
comparers, so the result depends on which comparer was chosen to build the union. 
Recall that in C#cpt and Genus models are part of types; therefore, a similar situation 
causes the static type error. But in the case of the Concept pattern models-consistency 
cannot be checked at compile time. 

4.2 Instance Uniqueness in Haskell 
Type classes in Haskell [23] provide the support for ad hoc polymorphism (function 
overloading). Like concepts and constraints, they define functions available for some 
types. For instance, a type class for equality comparison is defined in Haskell as 
follows: 
class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
  x /= y = not (x == y) 
                                                 
12  Scala is often blamed for its complex rules of implicits resolution: sometimes it is not clear 
which implicit object is to be used. 
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It contains a function signature for the equality operator ==, and provides a default 
implementation for the inequality operator /=. Instances (models) of this type class 
can be retroactively defined for types. For example, an instance for Int, a type-
conditional instance for lists, and so on. 
instance Eq Int where …          -- (==) implementation 
instance Eq a => Eq [a] where …  -- (==) implementation 
As long as type classes support ad hoc polymorphism, they are “globally transparent”. 
If a function is a part of some type class, every time the name of this function is used, 
a compiler knows that an instance of the corresponding type class must be provided. 
Multiple instances of a type class for the same set of types are not allowed in Haskell, 
and there is a strong reason for that: type inference. Consider the following function 
definition: 
foo xs ys = if xs == ys then xs else xs ++ ys 
In Haskell such definition is valid and its type can be inferred. It is Eq a => [a] → [a] 
→ [a]13. Inference succeeds, because a compiler knows the following facts: 

 as long as (++) has the type [a] → [a] → [a], xs and ys are lists; 
 there is an instance of Eq for lists: Eq a => Eq [a]. 

If there were no Eq a => Eq [a] instance available, type checking would fail. 
Suppose that multiple instances of a type class are allowed. What to do with type 
inference of the foo in this case? To check whether there is at least one instance Eq [a] 
in the scope? But probably not all Eq [a] instances require Eq a, should not the type 
of the foo be changed in this case to the type Eq [a] => [a] → [a] → [a]? 
Now look at the following code: 
class Eq a => Baz a where 
  bar :: a -> Int 
useBar xs ys = if length xs > length ys then bar xs - bar ys 
      else bar ys - bar xs 
If instances are uniquely defined, type checker just checks if there is an instance Eq 
[a] that implies Baz [a] (xs and ys are inferred to be lists because length has the type 
[a] → Int). But if there are multiple Eq [a] instances, then every Baz [a] instance must 
specify which Eq [a] instance it uses. It can even be the case that there is a Baz [a] 
instance for one Eq [a], but not for another one. Therefore, at the point of the useBar 
definition a compiler has no idea whether there is an error of missed Baz [a] instance 
or not, because it knows nothing about the instance that might be used in a call to 
useBar. This information is available only at the point of the actual call, not the 
function definition. 
Note that even with the OverlappingInstances extension for Haskell, multiple models 
in a sense we discuss in the paper are not supported. This extension indeed allows 
having in a scope several instances that match the constraints deduced for code. But 
there must be only one, the most specialised instance among them that compiler can 

                                                 
13  [a] is a type of generic list, it is a notation for Data.List a. 
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select unambiguously (according to some rules) at the point of the code definition. 
Again, not at the call site — at the point of definition. Thus, a user of the code still 
cannot choose between instances, an instance is already selected by a compiler. Thus, 
Haskell sacrifices language support for multiple models for the sake of type inference. 
It is a strong argument for Haskell users, but in the case of the most object-oriented 
programming languages, which usually do not permit omitting type annotations of 
function arguments as well as constraints on type parameters, there is no need to 
prohibit multiple models in OO languages. 

4.3 Parameters versus Predicates 
So far we have found out that languages with “constraints-are-Not-types” philosophy 
may potentially provide better support for generic programming compared to other 
languages, especially if they also allow multiple models definition. We have seen 
only two languages with such properties, C#cpt [9] and Genus [10], and there is an 
essential shortcoming in the design of both of them: constraints on type parameters 
are declared in “predicate-style” rather than “parameter-style”. For example, consider 
the following Genus definition [10]: 
Map[V,W] SSSP[V,E,W](V s) 
where  GraphLike[V,E], Weighted[E,W], 
 OrdRing[W], Hashable[V] { ... } 
SSSP[V,E,W] is a function for Dijkstras single-source shortest-path algorithm, with 
the GraphLike[V,E], Weighted[E,W], OrdRing[W], and Hashable[V] being 
constraints on type parameters. The constraints look as if they are predicates on types; 
and if they were predicates, this function would probably be well-designed. For 
example, in Haskell, G, C#, Java, Rust, and many other languages, where only one 
model of a constraint is allowed for the given set of types, constraints on type 
parameters are indeed predicates: types either satisfy the constraint (if they have a 
model that is unique) or not. But in Genus and C#cpt constraints are not predicates, 
they are actually parameters, as long as different models of a constraint can be used. 
In the worst case a call to the SSSP[V,E,W] function would be as follows: 
...pathFromX = SSSP[MyVert, MyEdge, Double 
    with MyGrLike with MyEdgeDW 
   with DescDOR  with MyVerHash](x); 
Whereas in the best case: 
...pathFromX = SSSP[MyVert, MyEdge, Double](x); 
Note that edge and weight types cannot be deduced, because they are determined by 
the models of the constraints, not by the vertex x itself. It is easy to imagine that the 
models of edge weighing (Weighted[E,W]) and its ordered ring (OrdRing[W]) would 
often vary, so in many cases a call to SSSP[V,E,W] is likely to look like this: 
...pathFromX = SSSP[MyVert, MyEdge, Double 
   with MyEdgeDW with DescDOR](x); 
This is not very bad but is also not good enough. 
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If look again at the SSSP algorithm one could notice that it really depends on three 
things: a source vertex, a model of a weighed graph which this vertex belongs to, and 
a model of hashing. Furthermore, at the level of the SSSP signature the type E of 
edges does not matter, we are interested in the model of weighed graph as a whole. 
Taking into account this ideas, we can rewrite the SSSP in the following way: 
constraint WeighedGraph[V,E,W] 
 extends GraphLike[V,E], Weighted[E,W], OrdRing[W] {} 
Map[V,W] SSSP[V,E,W](V s) 
 where WeighedGraph[V,E,W], Hashable[V] { ... } 
Then a call to SSSP also becomes better: 
...pathFromX = SSSP[MyVert, MyEdge, Double with MyWGr](x); 
Nevertheless, we believe that in the case of multiple models the “predicate-style” 
syntax of constraints is misleading and makes it more difficult to write and call 
generic code. We suggest that the design of constraints has to be maintained in the 
“parameter-style”. One example of such design is provided by the extension for the 
OCaml language — modular implicits [32]; it is briefly discussed in Sec. 4-3-1. A 
sketch of the “parameter-style” design of constraints for object-oriented languages is 
presented in Sec. 4-3-2. 

4.3.1 Modular Implicits in OCaml 
In the “modular implicits” extension for the OCaml language [32] module types are 
used to describe constraints, modules represent models, with generic functions 
explicitly taking module-parameters. Fig. 14 demonstrates some examples. By 
contrast to concepts and genus constraints, module types and modules do not have 
type parameters, instead they have type members, such as the t in the Eq module type. 
Eq_int and Eq_list are the models of Eq for the int and generic list. Generic functions 
that need constraints, such as foo and foo’, explicitly take the implicit module 
parameters EL and E. Notice that just as type parameters, EL and E are compile-time 
parameters, not run-time. They are called implicit because at a call to generic function 
actual models can be inferred, as in the x and y examples in Fig. 14. Note that in the 
foo function any model of comparison of lists is expected, whereas foo’ expects a 
model of comparison of elements of lists and fixes the model Eq_list E for comparing 
lists. 
 

module type Eq = sig 
  type t 
  val equal : t -> t -> bool 
end 
 
implicit module Eq_int = struct 
  type t = int 
  let equal x y = ... 
end 
implicit module Eq_list {E : Eq} = struct 
  type t = Eq.t list 
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  let equal xs ys = ... 
end 
 
let foo {EL : Eq} xs ys = if EL.equal(xs, ys) 
                          then xs else xs @ ys 
let foo’ {E : Eq} xs ys = if (Eq_list E).equal(xs, ys) 
                          then xs else xs @ ys 
let x = foo  [1;2;3] [4;5] 
let y = foo’ [1;2;3] [4;5] 

Fig. 14. OCaml modular implicits 

4.3.2 Concept Parameters for C# 
Fig. 15 shows some examples of generic code in the style of concept-parameters, 
which we call Cp# — C# with concept-Parameters. Concepts are the same as in C#cpt, 
whereas constraints on type parameters are not predicates any more, they are 
explicitly stated as parameters in the angle brackets after the “ | ” sign. In the 
ICollection<T> interface the Remove method is obviously generic: it takes the 
concept-parameter eq for comparing values of type T. Note that concept-parameters 
can even be non-generic as in the MaxInt function. 
If default models are supported, it must be possible to infer concept-arguments just in 
the same way as in C#cpt or Genus, so that in common cases instances of generic 
functions and classes can be written in a usual way, without the need to specify the 
models required: 

var ints = new ISet<int>(...); 
var has5 = Contains(ints, 5); 
 

var maxv = MaxInt(ints); 
var minv = MaxInt<|IntOrdDesc>(ints); 
 

ISet<String> s1 = ...; 
ISet<String|StringEqCaseIS> s2 = ...; 
s1 = s2; // Static ERROR, s1 and s2 have different types 

C#cpt and Genus can easily be redesigned to follow the “concept-parameters” style 
presented here. With this style, the syntax of such languages would perfectly fit the 
semantics. On the other hand, the “concept-predicates” style used misleads a 
programmer and masks the fact that constraints can be satisfied non-uniquely. 
 

concept Equality[T]{ bool Equal(T x, T y); 
                     bool NotEqual(T x, T y) {return !Equal(x, y);} } 
concept Ordering[T] refines Equality[T]  { int Compare(T x, T y); } } 
 
interface ISet<T | Equality[T] eq> { ... } 
interface ICollection<T> { ... 
  bool Remove<Equality[T] eq>(T x);  ... } 
bool Contains<T | Equality[T] eq>(IEnumerable<T> vs, T x) 
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{... if (eq.Equal(...) …} 
 
int MaxInt<|Ordering[int] ord>(IEnumerable<int> vs) {...} 

Fig. 15. The use of concept-parameters in Cp# 

4. Single Model versus Multiple Models 
Table 1 provides a summary on comparison of the languages: each row corresponds 
to one property important for generic programming, each column shows levels of 
support of the properties in one language. Black circle ● indicates full support of a 
property, � — partial support, ○ means that a property is not supported at the 
language level, ✴ means that a property is emulated using the Concept pattern, and 
the “−” sign indicates that a property is not applicable to a language. The “ModImpl” 
column corresponds to the Ocaml modular implicits. All the properties that appear in 
rows of Table 1 were discussed in Sec. 3 and Sec. 4. Related  properties are grouped 
within horizontal lines; some of them are mutually exclusive. For example, as we saw 
earlier, the use of constraints as types and natural language support for multi-type 
constraints are mutually exclusive features. The major features analysed in the paper 
are highlighted in bold. 

Table 1. The levels of support for generic programming on OO languages 

a    Constraints have no self types, therefore, any function member of a constraint can be treated as static function.  
b    G supports lexically-scoped models but not really multiple models. 
c   If multiple models are not supported, the notion of model-dependent types does not make sense. 
d    C++0x concepts, in contrast to G concepts, provide full support for concept-based overloading. 
 

The purpose of this table is not to determine the best language. The purpose is to show 
dependencies between different properties and to graphically demonstrate that the 
“constraints-are-Not-types” approach is more powerful than the “constraints-are-
types” one. It is also easy to see that there are features that can be expressed under 
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any approach, such as static methods, default method implementations, associated 
types [15], and even type-conditional models. 
It should be mentioned that the table is not exhaustive. There is a bunch of facilities 
that we did not discuss at all, although they can be considered independently of the 
study we made. Thus, for example, Genus [10] provides a support for such useful 
feature as multiple dynamic dispatch. Consider the following code: 

constraint Intersectable[T] { T T.intersect(T that); } 
model ShapeIntersect for Intersectable[Shape] 
{   Shape Shape.intersect(Shape s) {...} 
    // Rectangle and Circle are subclasses of Shape 
    Rectangle Rectangle.intersect(Rectangle r) {...} 
    Shape Circle.intersect(Rectangle r) {...} 
    Shape Triangle.intersect(Circle c) {...}   ...   } 

It provides a subtype polymorphism on multiple arguments. So that in the call 
s1.intersect(s2) the most specific version of intersect would be used depending on the 
dynamic types of both s1 and s2. 
Another interesting feature is concept variance. For example, suppose we have the 
following Cp# definitions: 

interface ISet<T | Equality[T] eq> { ... } 
class B { ... } 
class D : B { ... } 
model EqB for Equality[B] { ... } 

Should it be the case that ISet<D, EqB> is a legal instance? Under what conditions? 
It is also desirable to have the class SortedSet<T | Ordering[T] ord> implementing 
the interface ISet<T|ord>. Are there any problems here? 
Now recall the ICollection<T> interface definition: 

interface ICollection<T> { ...       
    bool Remove<Equality[T] eq>(T x); ...  } 

The SortedSet<T|ord> class obviously implements the interface ICollection<T>. 
Should it be the case that the ord model of Equality[T] be used in place of eq in the 
Remove method? Or the Remove method has to remain model-generic? 
And one more question. Consider the following function: 

void foo<T | Equality[T] eq>(ISet<T|eq> s) { ... } 
... 
ISet<string | EqStringCaseS> s1 = 
    new SortedSet<string | OrdStringCSAsc>(...); 
foo(s1); 

Which model of Equality[string] should be used inside the foo<>? The static 
EqStringCaseS or the dynamic OrdStringCSAsc one? 
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There are other questions similar to mentioned above that relate constraints on type 
parameters to usual features of object-oriented programming. Some of these questions 
require a careful type-theoretical investigation, so this is the subject for future work. 
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Дизайн средств обобщённого программирования в 
объектно-ориентированных языках:  
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Аннотация. Принято считать, что объектно-ориентированные (ОО) языки 
программирования обеспечивают более слабую поддержку обобщённого 
программирования (ОП) по сравнению с такими функциональными языками как Haskell 
или SML. Это было показано в нескольких работах, посвящённых сравнительному 
анализу языков программирования. Но в последние годы появились новые объектно-
ориентированные языки. Улучшили ли они поддержку обобщённого 
программирования? И если нет, есть ли причина, по которой ОО-языки до сих пор 
уступают функциональным языкам в этом отношении? В предыдущих исследованиях 
объектно-ориентированные языки не рассматривались специальным образом. Однако, 
возможности ОО-программирования влияют и на средства обобщённого 
программирования в языке, а также на сам стиль обобщённого программирования. В 
этой статье мы проводим сравнение средств обобщённого программирования в десяти 
современных объектно-ориентированных языках и их расширениях. В результате 
сравнительного анализа было обнаружено, что каждый из этих языков и расширений 
придерживается в точности одного из двух подходов к ограничению типовых 
параметров обобщённого кода. Таким образом, первый ключевой вопрос дизайна 
средств ОП, рассматриваемый в статье, это «какой подход лучше» (если он вообще есть). 
Оказывается, что большинство исследованных нами ОО-языков используют более 
ограниченный подход. Второй момент, который оказывает существенное влияние на 
выразительную мощь языка программирования, это поддержка множественных 
моделей. В статье рассматриваются преимущества и недостатки этой возможности, а 
также её связь с другими языковыми средствами поддержки обобщённого 
программирования. 

Ключевые слова: объектно-ориентированные языки; обобщённое программирование; 
типы; ограничения; концепты; интерфейсы; концепт-паттерн; множественные модели; 
концепт-параметры. 
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